\qquad

Honors Algebra 2

Section 10.1: Introduction to Conic Sections \& Video

Learning Target: We are learning about conic sections and reviewing midpoint and distance formulas

Success Criteria:

- I can recognize conic sections as intersections of planes and cones.
- I can use the distance and midpoint formulas to solve problems.

Use the table on p. 724 to answer:
What is the midpoint formula?

What is the distance formula?

Examples:
A. Find the distance between $(2,-7)$ and $(-3,5)$. Find the midpoint of the 2 points.
B. Given the midpoint $(-2,7)$ and endpoint $(-8,-8)$. Find the other end point.
C. Find the center and radius of a circle that has a diameter with endpoints of $(2,6)$ and $(14,22)$.

Section 10.2: Circles

Learning Target: We are learning about equations and graphs of circles

Success Criteria:

- I can write an equation for a circle.
- I can graph a circle, and identify its center and radius.

Conic Sections: a conic section (or just conic) is a curve obtained by intersecting a cone with a plane. The conic sections were named and studied as long ago as 200 BC, when Apollonius of Perga undertook a systematic study of their properties. All the variations in the shape of a conic section can be obtained by varying the slope of the plane intersecting the conical surface.

Types of conic sections:

1. Parabola
2. Circle and ellipse
3. Hyperbola

Circle Vocab:

LOCUS: a set of points that satisfy a given set of conditions
CIRCLE: locus of points in a plane at a given distance from a fixed point called the CENTER
RADIUS: distance from the CENTER to any point on the circle
CONCENTRIC CIRCLES: circles that have the same center but not the same radius
TANGENT: a line in the same plane of a circle that intersects the circle at exactly one point. The tangent to a circle is perpendicular to the radius at the POINT OF TANGENCY

STANDARD FORM of the EQUATION of a CIRCLE: where (h, k) is the center \& $\mathrm{r}=$ radius

Ex1: Write the equation of the circle in standard form:
A. With center $(4,-1)$ and radius 6 and then graph

B. With center $(-4,11)$ and containing $(5,-1)$
C. With diameter that has endpoints of $(-1,1)$ and $(5,13)$

Ex2: Interpret the difference in:
A. $(x-h)^{2}+(y-k)^{2}=r^{2}$ vs $(x-h)^{2}+(y-k)^{2} \geq r^{2}$ vs $(x-h)^{2}+(y-k)^{2}>r^{2}$
B. $(x-h)^{2}+(y-k)^{2}<r^{2}$ vs $(x-h)^{2}+(y-k)^{2}>r^{2}$

Ex3: Raul and his friends are having a pizza party
A. and will decide where to have the party based on the delivery area of the pizza restaurant. Suppose that the pizza restaurant is located at the point $(-1,2)$ and the letters represent the homes of Raul and his friends. Use the equation of a circle to find the houses that are within a 3 -mile radius and will get free delivery.

B. Use the map from Ex 3 A to determine which homes are within four miles of a restaurant located at (-1, 1).

Ex4: Write the y-intercept equation of the line tangent to circle $(x-1)^{2}+(y+3)^{2}=13$ at $(4,-5)$

Section 10.3: Ellipses

Learning Target: We are learning about equations and graphs of ellipses.

Success Criteria:

- I can write the standard equation for an ellipse.
- I can graph an ellipse, and identify its center, vertices, co-vertices, and foci.

Ellipse Vocab:

ELLIPSE: locus of all points in a plane such that the sum of the distances from two fixed points (foci) is constant
An ellipse has two AXES OF SYMMETRY, the MAJOR AXIS \& MINOR AXIS. The point where the two axes intersect is the CENTER of the ellipse and the center divides the major \& minor axes into two congruent segments

- the major axis is the longest axis and it contains the FOCI. Its length is 2 a and a is the distance from the center to an end of the major axis
- the endpoints of the major axis are called vertices
- the minor axis is the shortest axis and its length is $2 \mathrm{~b} . \mathrm{b}$ is the distance from the center to an end of the minor axis
- the endpoints of the minor axis are called co-vertices
- the foci (plural form of FOCUS) are the two fixed points and can be found using the formula $c^{2}=a^{2}-b^{2}$ where c is the distance from the center to a focus point

RECOGNIZING THE EQUATION OF AN ELLIPSE:

Ex1: Find the constant sum for an ellipse with foci $F_{1}(3,0)$ and $F_{2}=(24,0)$ and a point on the ellipse $P(9,8)$.

Ex2
A.

Graph $\frac{x^{2}}{16}+\frac{(y+4)^{2}}{9}=1$

Ex3: Write the equation for each ellipse described.
A. Center at origin, vertex $(6,0) \&$ co-vertex $(0,4)$
C. center is $(-5,1)$ its major axis is 10 units long and parallel to the x-axis and its minor axis is 6 units long
B. $\quad \operatorname{Graph} \frac{(x-3)^{2}}{16}+\frac{(y-2)^{2}}{25}=1$

B. Center at origin, focus $(0,3) \&$ co-vertex $(5,0)$
D. Vertices $(3,6) \&(3,-2)$ Foci $(3,5) \&(3,-1)$

Section 10.4: Hyperbolas

Learning Target: We are learning about the equations and graphs of hyperbolas.

Success Criteria:

- I can write the standard equation for a hyperbola.
- I can graph a hyperbola, and identify its vertices, co-vertices, center, foci, and asymptotes.

HYPERBOLA VOCAB

HYPERBOLA: locus of all points in a plane such that the absolute value of the differences of the distance from two fixed points (foci) is constant $\rightarrow d=\left|P F_{1}-P F_{2}\right|$

- a hyperbola has two AXES OF SYMMETRY, the TRANSVERSE AXIS \& CONJUGATE AXIS. The point where the two axes intersect is the CENTER of the hyperbola - the center is also the midpoint of the segment whose endpoints are the foci
- the foci are the two fixed points and can be found using $c^{2}=a^{2}+b^{2}$ where c is the distance from the center to a focus point
- the endpoints of the transverse axis are called VERTICES. The transverse axis contains the vertices (and if extended, the foci also) and the length of the transverse axis is 2 a
- the conjugate axis is perpendicular to the transverse axis at the center and separates the hyperbola into 2 BRANCHES. The endpoints of the conjugate axis are called CO-VERTICES and its length is 2 b

ASYMPTOTE: an imaginary line that a graph approaches but never reaches (as inputs get larger and larger or smaller and smaller)
Standard Form for the Equation of a Hyperbola Center at (h, k)

TRANSVERSE AXIS	HORIZONTAL	VERTICAL
Equation	$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$	$\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
Vertices	$(h+a, k),(h-a, k)$	$(h, k+a),(h, k-a)$
Foci	$(h+c, k),(h-c, k)$	$(h, k+c),(h, k-c)$
Co-vertices	$(h, k+b),(h, k-b)$	$(h+b, k),(h-b, k)$
Asymptotes	$y-k= \pm \frac{b}{a}(x-h)$	$y-k= \pm \frac{a}{b}(x-h)$

As the parameters change the hyperbola is transformed:

Parameter	Transformation
h	Translates the graph left for $h>0$ and right for $h<0$
k	Translates the graph up for $k>0$ and down for $k<0$
a	Stretches the graph in the direction of the transverse axis; as a increases, the vertices move farther apart.
b	Stretches the graph in the direction of the conjugate axis; as b increases, the co-vertices move farther apart.

Ex1: Write the equation of the hyperbola shown/ described. Graph C \& D.
A.

B.

C. Center is $(-2,3)$, has a horizontal transverse axis of 12 units long and a conjugate axis of 20 units long
D. Vertices are $(-4,2)$ and $(-4,8)$ and whose conjugate axis is 10 units long.

Section 10.5: Parabolas

Learning Target: We are learning about the equations and graphs of parabolas.

Success Criteria:

- I can write the standard equation of a parabola and its axis of symmetry.
- I can graph a parabola, and identify its focus, directrix, and axis of symmetry.

PARABOLA VOCAB

PARABOLA: locus of all points in a plane that are the same distance from a given point called the FOCUS to a given line called the DIRECTRIX

- $\quad \mathrm{p}$ is the distance from the focus to the vertex and the distance from the vertex to the directrix

In the equation only one of the variables is squared

- if the parabola opens up or down, x is squared
- if the parabola opens right or left, y is squared

AXIS OF SYMMETRY: the line that passes through the vertex of the parabola and divides the parabola into two matching halves

- axis of symmetry is $x=h$ if the parabola opens up or down
- axis of symmetry is $\mathrm{y}=\mathrm{k}$ if the parabola opens right or left

RECOGNIZING EQUATION OF A PARABOLA:

Standard Form for the Equation of a Parabola Vertex at (h,k)		
AXIS OF SYMMETRY	HORIZONTAL $y=k$	VERTICAL $x=h$
Equation		
Direction	Opens right if $p>0$ Opens left if $p<0$	Opens upward if $p>0$ Opens downward if $p<0$
Focus	$(h+p, k)$	(h, $k+p$)
Directrix	$x=h-p$	$y=k-p$
Graph		

Ex1: Find the coordinates of the vertex, value of p and state the direction of the opening for:
A. $(x+2)=1 / 2(y+5)^{2}$
B. $(x-3)^{2}=-8(y-4)$

Ex2: Using the distance formula, write the equation of the parabola with a focus $F(2,4)$ and directrix $y=-4$.

Ex3: Write the equation of the parabola shown/ described.
A.

B.

C. Focus $(2,5)$ and directrix $x=4$
D. Vertex (4, 2) and focus (4, 3)

Ex4: Graph the parabola by finding the vertex, focus and equation of the directrix and AOS.
A. $x-1=\frac{1}{8}(y-2)^{2}$

B. $(y+3)^{2}=-16(x-5)$

C. $x^{2}-8 y=0$

Section 10.6: Identifying Conic Sections

Learning Target: We are learning to identify conic sections in varying forms of equations

Success Criteria:

- I can identify and transform conic sections.
- I can use the method of completing the square to identify and graph conic sections.

Identifying Conics in Standard Form	
Circle:	Ellipse:
Hyperbola:	Parabola:

The GENERAL FORM of a conic section is $\mathbf{A x} \mathbf{x}^{2}+\mathbf{B x y}+\mathbf{C y}^{2}+\mathbf{D x}+\mathbf{E y}+\mathbf{F}=\mathbf{0} \quad($ where $A, B, \& C$ are not $A L L=0)$

CONIC SECTION	COEFFICIENTS
Circle	$B^{2}-4 A C<0, B=0$, and $A=C$
Ellipse	$B^{2}-4 A C<0$ and either $B \neq 0$ or $A \neq C$
Hyperbola	$B^{2}-4 A C>0$
Parabola	$B^{2}-4 A C=0$

Ex1: Identify the conic section
A. $\frac{(y-5)^{2}}{36}+\frac{(x+2)^{2}}{16}=1$
B. $\quad 16(x-1)^{2}=144+9(y-2)^{2}$
C. $\frac{(x-3)^{2}}{8}+\frac{(y-2)^{2}}{8}=\frac{16}{50}$
D. $x+4=\frac{(y-2)^{2}}{10}$
E. $\frac{(x-6)^{2}}{36}=\frac{(y+4)^{2}+16}{16}$
F. $\quad 2 x^{2}+2 y^{2}+16 x-20 y=-32$
G. $12 x^{2}+18 y^{2}+24 x-30 y-50=0$
H. $9 x^{2}-12 x y+4 y^{2}+6 x-8 y=0$
\checkmark General form is not easily graphed, so it is important to develop some skills to find the standard form of a conic section from the general form. We will begin to develop some of these skills now.

Ex2: Write the equation of the conic section in standard form.
A. $25 y^{2}+9 x^{2}+72 x-81=0$
B. $9 x^{2}-16 y^{2}-90 x-64 y+17=0$
C. $4 x^{2}+4 y^{2}-24 x+16 y=-51$
D. $y^{2}+20 y-4 x+100=0$

Optional: Section 10.7: Solving Nonlinear Systems

A system of nonlinear equations is two or more equations (at least one of which is not a linear equation) that are being solved simultaneously.
${ }^{* * *}$ Note that in a nonlinear system, one or more of your equations can be linear, just not ALL of them.

- We will primarily use the substitution method to solve a non-linear system. However, sometimes the elimination method is a viable option as well.
- Recall that the solution to a non-linear system is all the points of intersection of the graphs of the equations. Therefore, since we now have more than just lines, we can have a variety of numbers of solutions. The graph can intersect once, twice, several times or not at all. To verify the solution(s) to a system, look at the graph.

Examples of nonlinear systems:

Ex1: Solve the nonlinear system
A. $x^{2}+y^{2}=100$
$y-x=2$
B. $x^{2}+y^{2}=25$
$4 x^{2}+9 y^{2}=145$
C. $x^{2}+y^{2}=100$
$y+26=\frac{1}{2} x^{2}$
D. $x^{2}+2 y^{2}=12$
$x y=4$
E.

A tour boat travels around a small island in a pattern that can be modeled by the equation $36 x^{2}+25 y^{2}=900$, with the island at the origin. Suppose that a fishing boat approaches the island on a path that can be modeled by the equation $y-3=\frac{1}{5} x^{2}$. Is there any danger
 of collision?
F.

Astronomy An asteroid is traveling toward Earth on a path that can be modeled by the equation $y=\frac{1}{28} x^{2}-7$. It approaches a satellite in orbit on a path that can be modeled by the equation $\frac{x^{2}}{49}+\frac{y^{2}}{51}=1$. What are the coordinates of the points where the
 satellite and asteroid might collide?

Multi-Step The lake at a resort has an island near the center. A tour boat's path on the lake can be modeled by the equation $16 x^{2}+9 y^{2}=36$, with the island at the origin. If a canoe's path on the lake can be modeled by the equation $8 x+5 y^{2}=20$, find the coordinates of the points on the lake where the boats might meet.

