### **Honors Geometry**

### Ch 2 Notes Packet

#### Section 2-1:

After this section you will be improving your skills in the following Mathematical Practice(s):

- 2. Reason abstractly and quantitatively
- 7. Look for and make use of structure

Specifically, you should be able to:

- Make conjectures based on inductive reasoning
- Find counterexamples

Inductive Reasoning:

#### Conjecture:

#### **Counterexample:**

**Examples:** 

### Section 2-2:

After this section you will be improving your skills in the following Mathematical Practice(s):

- 2. Reason abstractly and quantitatively
- 7. Look for and make use of structure

Specifically, you should be able to:

- Determine the truth values of negations, conjunctions and disjunctions
- Represent conjunctions and disjunctions with Venn diagrams

<u>Statement:</u> <u>Truth Value:</u> <u>Negation:</u> <u>Compound Statement:</u>

| An "and" | statement in logic is called a | •  |
|----------|--------------------------------|----|
| An "and" | statement is only true if      | _• |

An "or" statement is called a \_\_\_\_\_\_. An "or" statement is true if \_\_\_\_\_\_.

Two statements are \_\_\_\_\_\_ if they have the exact same

Truth Tables:

| р | q | ~р | ~q |  |  |
|---|---|----|----|--|--|
| Т | Т |    |    |  |  |
| Т | F |    |    |  |  |
| F | Т |    |    |  |  |
| F | F |    |    |  |  |

| <u>(ds)</u> : If one part of a true "or" statement is, |
|--------------------------------------------------------|
| then the other part must be                            |
| given: p or q , ~q                                     |

conclusion:

## **Examples:**

### Section 2-3:

After this section you will be improving your skills in the following Mathematical Practice(s):

7. Look for and make use of structure

Specifically, you should be able to:

- Analyze statements in if-then form
- Write the converse, inverse and contrapositive of if-then statements

| · | _statement is a statement in |  | form. |
|---|------------------------------|--|-------|
|---|------------------------------|--|-------|

The "if" part is the \_\_\_\_\_. The "then" part is the \_\_\_\_\_.

## Ex: If you live in Frankenmuth, then you live in Michigan.

| The                | of a statement is formed by _ | the    |
|--------------------|-------------------------------|--------|
| hypothesis and con | clusion. (backwards)          |        |
| Ex:                |                               |        |
| The                | of statement is the           | of the |

| The                   | of statement is the | of the |
|-----------------------|---------------------|--------|
| statement. (negative) |                     |        |
| Ex:                   |                     |        |
|                       |                     |        |

| The of a statement is the,                                                                                                                                                                        |                 |               |        |                    |               |               |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|--------|--------------------|---------------|---------------|---------|
| (backwards and negative of the).                                                                                                                                                                  |                 |               |        |                    |               |               |         |
| Ex:                                                                                                                                                                                               |                 |               |        |                    |               |               |         |
| The o                                                                                                                                                                                             | contra          | aposit        | ive of | a                  | stateme       | ent is always | ,       |
| SO W                                                                                                                                                                                              | e call          | them          |        |                    | state         | ments.        |         |
| An if<br>conc                                                                                                                                                                                     | -then<br>lusior | state<br>i is | ment   | is only false if t | he hypothesis | is            | and the |
| p                                                                                                                                                                                                 | q               | ~p            | ~q     |                    |               |               |         |
| Т                                                                                                                                                                                                 | Т               |               |        |                    |               |               |         |
| Т                                                                                                                                                                                                 | F               |               |        |                    |               |               |         |
| F                                                                                                                                                                                                 | Т               |               |        |                    |               |               |         |
| F                                                                                                                                                                                                 | F               |               |        |                    |               |               |         |
| Notice again that $p \rightarrow q$ is logically equivalent to $\sim q \rightarrow \sim p$ , because they have<br>the same truth tables.<br>Astatement is a statement that contains the<br>phrase |                 |               |        |                    |               |               |         |
| AND                                                                                                                                                                                               |                 |               |        |                    |               |               |         |
| A goodcan be written as a biconditional statement.                                                                                                                                                |                 |               |        |                    |               |               |         |
| ex: Two angles areif and only if they shareif and only if they share                                                                                                                              |                 |               |        |                    |               |               |         |
| ex:                                                                                                                                                                                               |                 |               |        |                    |               |               |         |

## Section 2-4:

After this section you will be improving your skills in the following Mathematical Practice(s):

2. Reason abstractly and quantitatively

3. Make logical arguments and critique the reasoning of others

Specifically, you should be able to:

• Use the Law of Detachment/ Syllogism/ Disjunctive Syllogism

• Use the fact that the contrapositive of a true statement is true

|                             | is drawing logically              | conclusions            |
|-----------------------------|-----------------------------------|------------------------|
| by using an argument involv | ving facts, rules, definitions of | or properties. This is |
| the type of reasoning we us | se in                             |                        |

Law of Detachment: Given: If p then q, p Conclusion:

Law of Syllogism: Given: If A then B, If B then C. Conclusion:

### Examples Law of Detachment (L.O.D.)

Premises: If Liam forgets his lunch, then he will be hungry. Liam forgot his lunch.

Conclusion:

## Law of Syllogism (L.O.S)

Premises: If Liam forgets his lunch, then he will be hungry. If Liam is hungry, then he will be in a bad mood.

Conclusion:

## Contrapositive of a True statement is True (C.T.T.)

Premise: If Liam forgets his lunch, then he will be hungry.

Conclusion:

## (C.T.T./L.O.D)

<u>Premises:</u> If Liam forgets his lunch, then he will be hungry. Liam wasn't hungry.

Conclusion:

\*\*Don't forget about D.S. (\_\_\_\_\_\_

**Examples:** 

### Section 2-5:

After this section you will have completed the following Common Core State Standard(s):

• G.MG.3: Apply geometric methods to solve problems.

And will be improving your skills in the following Mathematical Practice(s):

2. Reason abstractly and quantitatively

**3. Construct viable arguments and critique the reasoning of others** Specifically, you should be able to:

- Identify and use basic postulates about points, lines, and planes
- Write paragraph proofs

#### Postulate/ Axiom:

Point Line and Plane Postulates:

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Theorem:

Midpoint Theorem: If M is the midpoint of  $\overline{AB}$ , then \_\_\_\_\_

Proof:

**Deductive Argument:** 

Paragraph Proof:

### Section 2-6:

After this section you will have completed the following Common Core State Standard(s):

- Preparation for G.CO.9: Prove theorems about lines and angles
- And will be improving your skills in the following Mathematical Practice(s): 3. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Use algebra to write 2 column proofs
- Use properties of equality to write geometric proofs

### Algebraic Proof:

### **Algebraic Properties Of Equality:**

Addition (A.P.O.E.): If a = b, then

Subtraction (S.P.O.E.): If a = b, then

<u>Multiplication</u> (M.P.O.E.): If a = b, then

Division (D.P.O.E.) If a = b, then



Solve the following equation and write reasons next to each step.

3(x-2)+2x=19 given

Two Column Proof:

## <u>Reflexive</u>: Any measure or shape is congruent to \_\_\_\_\_:

<u>Symmetric</u>: The \_\_\_\_\_\_ in which things are equal/congruent doesn't matter.

<u>Transitive</u>: If two things are equal/congruent to the same thing, then they are equal/congruent to \_\_\_\_\_\_.

<u>Substitution</u>: If a = b, then b can be substituted in for a in any equation.

Note: Substitution can only be used with numbers/measures, not shapes.

### Sec 2-7 & 2-8:

After this section you will have completed the following Common Core State Standard(s):

• G.CO.9: Prove theorems about lines and angles

And will be improving your skills in the following Mathematical Practice(s):

2. Reason abstractly and quantitatively

**3. Construct viable arguments and critique the reasoning of others** Specifically, you should be able to:

- Write proofs involving segment and angle addition and segment congruence
- Write proofs involving supplementary and complementary angles
- Write proofs involving congruent and right angles

### Segment Addition Postulate:

### Angle Addition Postulate:

Linear Pair Postulate: If two angles form a linear pair, then they are

\_\_\_\_\_·

<u>Congruent Supplements/Complements Theorem</u>: Two angle that are supplementary/complementary to the same angle are \_\_\_\_\_\_.

Proof:

Vertical Angles Theorem: If two angles are vertical angles, then they are

Proof:

Other Theorems:

Perpendicular lines intersect to form \_\_\_\_\_\_.

All right angles are \_\_\_\_\_.

\_\_\_\_\_

- Perpendicular lines form \_\_\_\_\_\_.
- If two angles are congruent and supplementary, then each angle is
- If two congruent angles form a linear pair, then each angle is