Section 2-1:

After this section you will be improving your skills in the following Mathematical Practice(s):
2. Reason abstractly and quantitatively
7. Look for and make use of structure

Specifically, you should be able to:

- Make conjectures based on inductive reasoning
- Find counterexamples

Inductive Reasoning:

Conjecture:

Counterexample:

Examples:

Section 2-2:

After this section you will be improving your skills in the following Mathematical Practice(s):
2. Reason abstractly and quantitatively
7. Look for and make use of structure

Specifically, you should be able to:

- Determine the truth values of negations, conjunctions and disjunctions
- Represent conjunctions and disjunctions with Venn diagrams

Statement:
Truth Value:
Negation:
Compound Statement:

An "and" statement in logic is called a \qquad .
An "and" statement is only true if \qquad .

An "or" statement is called a \qquad .
An "or" statement is true if \qquad .

Two statements are \qquad if they have the exact same
\qquad .

Truth Tables:

p	q	$\sim \mathrm{p}$	$\sim \mathrm{q}$				
T	T						
T	F						
F	T						
F	F						

(ds): If one part of a true "or" statement is \qquad then the other part must be \qquad .
given: por q , ~q conclusion:

Examples:

Section 2-3:

After this section you will be improving your skills in the following Mathematical Practice(s):
7. Look for and make use of structure

Specifically, you should be able to:

- Analyze statements in if-then form
- Write the converse, inverse and contrapositive of if-then statements

A \qquad statement is a statement in \qquad form.

The "if" part is the \qquad .
The "then" part is the \qquad .

Ex: If you live in Frankenmuth, then you live in Michigan.

The \qquad of a statement is formed by \qquad the hypothesis and conclusion. (backwards) Ex: \square

The \qquad of statement is the \qquad of the statement. (negative)
Ex: \square

The \qquad of a statement is the \qquad (backwards and negative of the \qquad).

Ex: \square
The contrapositive of a \qquad statement is always \qquad , so we call them \qquad statements.

An if-then statement is only false if the hypothesis is \qquad and the conclusion is

p	q	\sim_{p}	$\sim \mathrm{q}$				
T	T						
T	F						
F	T						
F	F						

Notice again that $p \rightarrow q$ is logically equivalent to ${ }^{\sim} q \rightarrow \sim p$, because they have the same truth tables.
A \qquad statement is a statement that contains the phrase \qquad .

Saying "I am working if and only if it is Saturday," means....
\square _can be written as a biconditional statement.
A good
ex: Two angles are \qquad if and only if they share a \qquad , but no \qquad .
ex:
\qquad .

Examples:

Section 2-4:

After this section you will be improving your skills in the following Mathematical Practice(s):
2. Reason abstractly and quantitatively
3. Make logical arguments and critique the reasoning of others

Specifically, you should be able to:

- Use the Law of Detachment/ Syllogism/ Disjunctive Syllogism
- Use the fact that the contrapositive of a true statement is true
_ is drawing logically conclusions by using an argument involving facts, rules, definitions or properties. This is the type of reasoning we use in \qquad .

Law of Detachment:
Given: If p then q, p
Conclusion:

Law of Syllogism:
Given: If A then B, If B then C.
Conclusion:

Examples

Law of Detachment (L.O.D.)

Premises: If Liam forgets his lunch, then he will be hungry. Liam forgot his lunch.
Conclusion: \square

Law of Syllogism (L.O.S)

Premises: If Liam forgets his lunch, then he will be hungry. If Liam is hungry, then he will be in a bad mood.
Conclusion: \square
Contrapositive of a True statement is True (C.T.T.)
Premise: If Liam forgets his lunch, then he will be hungry.
Conclusion:

(C.T.T./L.O.D)

Premises: If Liam forgets his lunch, then he will be hungry. Liam wasn't hungry.
Conclusion: \square
**Don’t forget about D.S. (\qquad
\qquad

Examples:

Section 2-5:

After this section you will have completed the following Common Core State Standards):

- G.MG.3: Apply geometric methods to solve problems.

And will be improving your skills in the following Mathematical Practices):
2. Reason abstractly and quantitatively
3. Construct viable arguments and critique the reasoning of others Specifically, you should be able to:

- Identify and use basic postulates about points, lines, and planes
- Write paragraph proofs

Postulate/ Axiom:

Point Line and Plane Postulates:
2.1
2.2
2.3
2.4
2.5
2.6
2.7

Theorem:

Midpoint Theorem: If M is the midpoint of $\overline{A B}$, then \qquad

Proof:

Deductive Argument:

Paragraph Proof:

Examples:

Section 2-6:

After this section you will have completed the following Common Core State Standard(s):

- Preparation for G.CO.9: Prove theorems about lines and angles And will be improving your skills in the following Mathematical Practice(s):

3. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Use algebra to write 2 column proofs
- Use properties of equality to write geometric proofs

Algebraic Proof:

Algebraic Properties Of Equality:

Addition (A.P.O.E.): If $a=b$, then \square

Subtraction (S.P.O.E.):If $a=b$, then \square

Multiplication (M.P.O.E.):If $a=b$, then \square

Division (D.P.O.E.)If $a=b$, then

Solve the following equation and write reasons next to each step.

$$
3(x-2)+2 x=19 \quad \text { given }
$$

Two Column Proof:

Reflexive: Any measure or shape is congruent to \qquad :
\square
Symmetric: The \qquad in which things are equal/congruent doesn't matter.
\square
Transitive: If two things are equal/congruent to the same thing, then they are equal/congruent to \qquad .
\square
Substitution: If $a=b$, then b can be substituted in for a in any equation.

Note: Substitution can only be used with numbers/measures, not shapes.

Examples:

Sec 2-7 \& 2-8:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.9: Prove theorems about lines and angles

And will be improving your skills in the following Mathematical Practice(s):
2. Reason abstractly and quantitatively
3. Construct viable arguments and critique the reasoning of others Specifically, you should be able to:

- Write proofs involving segment and angle addition and segment congruence
- Write proofs involving supplementary and complementary angles
- Write proofs involving congruent and right angles

Segment Addition Postulate:

Angle Addition Postulate:

Linear Pair Postulate: If two angles form a linear pair, then they are
\qquad .

Congruent Supplements/Complements Theorem: Two angle that are supplementary/complementary to the same angle are \qquad .

Vertical Angles Theorem: If two angles are vertical angles, then they are
\qquad .

Proof:

Other Theorems:

- Perpendicular lines intersect to form \qquad .
- All right angles are \qquad .
- Perpendicular lines form \qquad .
- If two angles are congruent and supplementary, then each angle is
\qquad .
- If two congruent angles form a linear pair, then each angle is
\qquad .

Examples:

