\qquad

Honors Geometry

Sec 3-1:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.1: Know precise definitions of angle, circle, perpendicular and parallel lines and line segments based on the undefined notions of point, line distance along line/around an arc, etc. And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them
2. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Identify the relationship between 2 lines or 2 planes
- Name angle pairs formed by parallel lines and transversals

Parallel Lines:

Parallel Planes:

Skew Lines:

A \qquad is a line that intersects \qquad other coplanar lines at \qquad .

Interior Angles:

Exterior Angles:

Corresponding Angles

Alternate Interior Angles

Alternate Exterior Angles

Consecutive Interior Angles

Examples:

Sec 3-2:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.1: Know precise definitions of angle, circle, perpendicular and parallel lines and line segments based on the undefined notions of point, line distance along line/around an arc, etc. And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them
2. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Use theorems to determine the relationships between specific angle pairs
- Use algebra to find angle measures

Corresponding angles postulate: If two \qquad lines are cut by a
\qquad then corresponding angles are \qquad .

Alternate Interior/Alternate Exterior/Consecutive Interior angles theorems: If two
 \qquad lines are cut by a
 \qquad then...

- alternate interior angles are \qquad .
- alternate exterior angles are
- consecutive interior angles are
\qquad .

Corr. \angle 's post. If then....

Alt. Int. $L^{\prime} s$ thm. If then....

Alt. Ext. $L^{\prime} s$ thm. If then....

Cons. Int. $L^{\prime} s$ thm. If then....

Examples:

Sec 3-3 \& 3-4:

After this section you will have completed the following Common Core State Standard(s):

- G.GPE.5: Prove the slope criteria for parallel and perpendicular and use them to solve geometric problems
And will be improving your skills in the following Mathematical Practice(s):

4. Model with mathematics
5. Look for and make use of structure
6. Look for and express regularity in repeated reasoning

Specifically, you should be able to:

- Find slopes of lines and use it to identify parallel and perpendicular lines
- Write equations of lines given information about the graph
- Solve problems by writing equations

\qquad lines have the \qquad slope.
lines \qquad slopes.

All vertical lines are \qquad .

Vertical and horizontal lines are \qquad .

Slope intercept form: \square

Point slope form:

Examples:

Sec 3-5:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.9: Prove theorems about lines and angles

And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them
2. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Recognize angle pairs that occur with parallel lines
- Prove that 2 lines are parallel

Converse of corresponding angles postulate:

If two lines are cut by a transversal such that corresponding angles are
\qquad , then the lines are \qquad .

Converse of Alternate Interior/Alternate Exterior/Consecutive Interior angles theorems:
If two lines are cut by a transversal such that...

- alternate interior angles are \qquad
- alternate exterior angles are \qquad , or
- consecutive interior angles are \qquad then the lines are \qquad .

If two lines are parallel to the same line, then they are \qquad to each other.

If two lines are perpendicular to the same line, then they are \qquad to each other.

Parallel Postulate: Given a line and a point not on a line, there is exactly
\qquad that is \qquad to the given line.

Examples:

Sec 3-6:

After this section you will have completed the following Common Core State Standard(s):

- G.MG.3: Apply geometric methods to solve problems

And will be improving your skills in the following Mathematical Practice(s):
2. Reason abstractly and quantitatively
4. Model with mathematics

Specifically, you should be able to:

- Find the distance between a point and a line
- Find the distance between parallel lines

Perpendicular Postulate: Given a line and point not on a line, there is exactly that \qquad to the given line.

The distance from a point to a line is the
\qquad
\qquad -

The distance between parallel lines is the

Equidistant:

Examples:

