Honors Geometry

Ch 4 Notes Packet

Sec 4-1:

After this section you will be improving your skills in the following Mathematical Practice(s):

- 2. Reason abstractly and quantitatively
- 6. Attend to precision

Specifically, you should be able to:

• Identify and classify triangles by angle measures and by side measures

Acute Equiangular Equilateral Isosceles

Obtuse

Right

Scalene

<u>Sec 4-2:</u>

After this section you will have completed the following Common Core State Standard(s):

• G.CO.10: Prove theorems about triangles

And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them

3. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Apply the triangle sum theorem
- Apply the exterior angle theorem

The Triangle Sum Theorem: The sum of

the measures of the _____ angles of a triangle is _____.

Given: ABC is a triangle Prove: $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$

Exterior Angle Theorem: The measure of an exterior angle of a triangle is equal to	2
	<u></u>
<u>Flow Proof:</u>	
Corollary: A statement that	·
 The acute angle of a right triangle are 	·

• There can be at most one ______ in a triangle.

Examples:

Sec 4-3:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.7: Use the definition of congruence in terms of rigid motions to show that 2 triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent
- G.SRT.5: Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures

And will be improving your skills in the following Mathematical Practice(s):

- 3. Construct viable arguments and critique the reasoning of others
- 6. Attend to precision

Specifically, you should be able to:

- Name and use corresponding parts of congruent polygons
- Prove triangle congruent using the definition of congruence

Definition of Congruent Polygons: Two polygons are

This means that if two triangles are _____, then all of their other corresponding sides and angles must also be

Third Angles Theorem:

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are .

Reflexive Property of Congruence:

Symmetric Property of Congruence:

Transitive Property of Congruence:

Examples:

Sec 4-4 & 4-5:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles
- G.SRT.5: Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures

And will be improving your skills in the following Mathematical Practice(s):

- 1. Make sense of problems and persevere in solving them
- 3. Construct viable arguments and critique the reasoning of others
- 5. Use appropriate tools strategically

Specifically, you should be able to:

• Use the SSS, SAS and ASA postulate and the AAS theorem to test for congruence

Side-Side-Side () Congruence Postulate:	
If	of one triangle are	R
congruent to	of another	~
triangle, then the	triangles are	

Side-Angle-Side () Congruence Postulate:

If ______ of one triangle are congruent to those of another triangle, then the triangles are ______.

Angle-Side-Angle () Congruence Postulate:

If ______ of one triangle are

congruent to those of another triangle, then the triangles are _____.

Angle-Angle-Side () Congruence Theorem:
If	of one triangle are
congruent to those of	another triangle, then the
triangles are	•

Combinations that work: SSS, SAS, ASA, AAS, HL Combinations that <u>don't</u> work: AAA, SSA

Examples:

<u>Sec 4-6:</u>

After this section you will have completed the following Common Core State Standard(s):

• G.CO.10: Prove theorems about triangles

And will be improving your skills in the following Mathematical Practice(s):

- 2. Reason abstractly and quantitatively
- 3. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Use the properties of isosceles triangles
- Use properties of equilateral triangles

Isosceles Triangle Theorem + Converse: Two sides of a triangle are congruent if and only if ______

Proof:

given: $\overline{AB} \cong \overline{BC}$ prove: $\angle A \cong \angle C$

Equilateral Triangle Corollaries:

- A triangle is equilateral if and only if ______
- Each angle of an equilateral triangle measures ______

Examples:

<u>Sec 4-7:</u>

After this section you will have completed the following Common Core State Standard(s):

- G.CO.6: Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; and given 2 figures, use the definition of congruence in terms of rigid motion to decide if they are congruent.
- G.CO.7: Use the definition of congruence in terms of rigid motions to show that 2 triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent

And will be improving your skills in the following Mathematical Practice(s):

- 1. Makes sense of problems and persevere in solving them
- 7. Look for and make use of structure

Specifically, you should be able to:

- Identify reflections, translations and rotations
- Verify congruence after a congruence transformation

Congruent (rigid) transformations (isometries) are transformations that

•

Image:	Preimage:
Translation: Every point in a figur	re moves
Rotation: Every point moves	
Reflection: Every point is moved reflection or mirror) and stays	(the line of that it was before.
А с	Examples:

<u>Sec 4-8:</u>

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles
- G.GPE.4: Use coordinates to prove simple geometric theorems algebraically

And will be improving your skills in the following Mathematical Practice(s):

2. Reason abstractly and quantitatively

3. Construct viable arguments and critique the reasoning of others Specifically, you should be able to:

- Position and label triangles for use in coordinate proofs
- Write coordinate proofs

Coordinate Proofs

When you do a coordinate pr	roof with specific points it only proves something
is true for	shape, but if you use variables for points, then
it proves that it's true for	of those shapes.

Examples:

Prove the segment connecting the midpoints of two sides of a triangle is parallel to and half the length of the third side.

Prove the segment that joints the vertex of the right angle in a right triangle to the midpoint of the hypotenuse is perpendicular to the hypotenuse.