\qquad

Sec 4-1:

After this section you will be improving your skills in the following Mathematical Practice(s):
2. Reason abstractly and quantitatively
6. Attend to precision

Specifically, you should be able to:

- Identify and classify triangles by angle measures and by side measures

Sec 4-2:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles

And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them
2. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Apply the triangle sum theorem
- Apply the exterior angle theorem

The Triangle Sum Theorem: The sum of

 the measures of the \qquad angles of a triangle is \qquad .Given: $A B C$ is a triangle
Prove: $m \angle 1+m \angle 2+m \angle 3=180^{\circ}$

Exterior Angle Theorem: The measure of an exterior angle of a triangle is equal to \qquad

Flow Proof:

Corollary: A statement that \qquad .

- The acute angle of a right triangle are \qquad .
- There can be at most one \qquad in a triangle.

Examples:

Sec 4-3:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.7: Use the definition of congruence in terms of rigid motions to show that 2 triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent
- G.SRT.5: Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures
And will be improving your skills in the following Mathematical Practice(s):

3. Construct viable arguments and critique the reasoning of others
4. Attend to precision

Specifically, you should be able to:

- Name and use corresponding parts of congruent polygons
- Prove triangle congruent using the definition of congruence

Definition of Congruent Polygons: Two polygons are

 if and only if all of their \qquad sides and angles are \qquad .

CPCTC (C \qquad P \qquad of C T \qquad are \mathbf{C} \qquad .)

This means that if two triangles are \qquad , then all of their other corresponding sides and angles must also be \qquad .

Third Angles Theorem:

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are \qquad .

Reflexive Property of Congruence:

Symmetric Property of Congruence:

Transitive Property of Congruence:

Examples:

Sec 4-4 \& 4-5:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles
- G.SRT.5: Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures
And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them
2. Construct viable arguments and critique the reasoning of others
3. Use appropriate tools strategically

Specifically, you should be able to:

- Use the SSS, SAS and ASA postulate and the AAS theorem to test for congruence

Side-Side-Side () Congruence Postulate:

If \qquad of one triangle are congruent to \qquad of another
triangle, then the triangles are \qquad .
\square

Side-Angle-Side () Congruence Postulate:
If \qquad of one triangle are congruent to those of another triangle, then the triangles are \qquad .
\square

Angle-Side-Angle () Congruence Postulate:

If \qquad of one triangle are congruent to those of another triangle, then the triangles are \qquad .
\square

Angle-Angle-Side () Congruence Theorem:

If \qquad of one triangle are congruent to those of another triangle, then the triangles are \qquad .
\square

Combinations that work: SSS, SAS, ASA, AAS, HL Combinations that don't work: AAA, SSA

Examples:

Sec 4-6:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles

And will be improving your skills in the following Mathematical Practice(s):
2. Reason abstractly and quantitatively
3. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Use the properties of isosceles triangles
- Use properties of equilateral triangles

Isosceles Triangle Theorem + Converse: Two sides of a triangle are congruent if and only if \qquad .

Proof:

given: $\overline{A B} \cong \overline{B C}$
prove: $\angle A \cong \angle C$

\square

Equilateral Triangle Corollaries:

- A triangle is equilateral if and only if \qquad
- Each angle of an equilateral triangle measures \qquad

Examples:

Sec 4-7:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.6: Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; and given 2 figures, use the definition of congruence in terms of rigid motion to decide if they are congruent.
- G.CO.7: Use the definition of congruence in terms of rigid motions to show that 2 triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent
And will be improving your skills in the following Mathematical Practice(s):

1. Makes sense of problems and persevere in solving them
2. Look for and make use of structure

Specifically, you should be able to:

- Identify reflections, translations and rotations
- Verify congruence after a congruence transformation

Congruent (rigid) transformations (isometries) are transformations that
\qquad .

Image:
Preimage:

Translation: Every point in a figure moves \qquad
\qquad .

Rotation: Every point moves \qquad
\qquad -

Reflection: Every point is moved \qquad (the line of reflection or mirror) and stays \qquad that it was before.

Examples:

Sec 4-8:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles
- G.GPE.4: Use coordinates to prove simple geometric theorems algebraically

And will be improving your skills in the following Mathematical Practice(s):
2. Reason abstractly and quantitatively
3. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Position and label triangles for use in coordinate proofs
- Write coordinate proofs

Coordinate Proofs

When you do a coordinate proof with specific points it only proves something is true for \qquad shape, but if you use variables for points, then it proves that it's true for \qquad of those shapes.

Examples:

Prove the segment connecting the midpoints of two sides of a triangle is parallel to and half the length of the third side.

Prove the segment that joints the vertex of the right angle in a right triangle to the midpoint of the hypotenuse is perpendicular to the hypotenuse.

