Honors Geometry

Ch 5 Notes Packet

<u>Sec 5-1:</u>

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles
- G.MG.3: Apply geometric methods to solve problems

And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them

- **3.** Construct viable arguments and critique the reasoning of others Specifically, you should be able to:
 - Identify and use perpendicular bisectors in triangles
 - Identify and use angle bisectors in triangles

Perpendicular Bisector Thm: If a point on the perpendicular			
bisector of a segmen	t then it is	from	
the	of the segment.		

Converse of Perpendicular Bisector Thm: If a point is		
	from the endpoints of a segment	
then it is on the	of the segment	A

С

D

• _____ lines are three or more lines that intersect at the same point.

Circumcenter Thm: The	
	_of a triangle intersect at the
	, which is equidistant from the
of t	the triangle

Examples:

2. A triangular-shaped garden is shown. Can a fountain be placed at the circumcenter and still be inside the garden?

Angle Bisector Thm: If a point is on the bisector of an angle, then it is ______ from the ______ of the angle.

Converse of Angle Bisector Thm: If a point is in the interior of and angle and is ______ from the ______ of the angle, then it is on the ______ of an angle.

Incenter Thm: The ______ of a triangle intersect at the ______, which is

equidistant from the _____ of the triangle.

Examples:

4. R is the circumcenter of $\triangle OPQ$, OS = 10, QR = 12 and PQ = 22.

Find: OP

RP

TR

SR

5. The angle bisectors of \triangle ABC meet at P, PR = 3 and PC = 5. Find QC.

EG ED HD FD ∠GDE

6. Find:

<u>Sec 5-2:</u>

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles
- G.MG.3: Apply geometric methods to solve problems

And will be improving your skills in the following Mathematical Practice(s):

- 3. Construct viable arguments and critique the reasoning of others
- 6. Attend to precision

Specifically, you should be able to:

- Identify and use medians in triangles
- Identify and use altitudes in triangles

A ______of a triangle connects the ______ of one side to the opposite ______.

• The centroid is the point of concurrency of the ______ of a triangle

Centroid Thm: The ______ of a triangle intersect at the ______. The distance from vertex to the centroid of the triangle is _____ the length of the whole median. [Thus the distance from the midpoint to the centroid is _____ the length of the whole median.

• The centroid is the _____ or ____ of the triangle.

An ______of a triangle is ______ to one side and intersects the opposite ______.

The ______ of a triangle intersect at the

Examples:

1. Let P be the centroid of $\triangle XYZ$. If YP = 3x+3 and YV = 7x - 13, find x and the length of PV.

2. An artist is designing a sculpture that balances a triangle on top of a pole. In the artist's design on the coordinate plane, the vertices are located at (1, 4), (3, 0), and (3, 8). What are the coordinates of the point where the artist should place the pole under the triangle so that it will balance?

The vertices of Δ HIJ are H(1, 4), I(-1, -0), and J(4, 1). Find the coordinates of the orthocenter of Δ HIJ.

ConceptSummary Special Segments and Points in Triangles				
Name	Example	Point of Concurrency	Special Property	Example
perpendicular bisector		circumcenter	The circumcenter P of $\triangle ABC$ is equidistant from each vertex.	A B C
angle bisector		incenter	The incenter Q of $\triangle ABC$ is equidistant from each side of the triangle.	A B C
median		centroid	The centroid R of $\triangle ABC$ is two thirds of the distance from each vertex to the midpoint of the opposite side.	
altitude		orthocenter	The lines containing the altitudes of $\triangle ABC$ are concurrent at the orthocenter <i>S</i> .	A C

<u>Sec 5-3:</u>

After this section you will have completed the following Common Core State Standard(s):

• G.CO.10: Prove theorems about triangles

And will be improving your skills in the following Mathematical Practice(s):

2. Make sense of problems and persevere in solving them

4. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Apply the triangle sum theorem
- Apply the exterior angle theorem

Exterior Angle Inequality: The measure of an exterior angle of a triangle is greater than the measure of ______.

Theorems involving unequal sides or angles:

The ______ side of a triangle is always across from the ______ angle, and the ______ side is always across from the ______ angle.

The ______ angle of a triangle is always across from the ______ side, and the ______ angle is always across from the ______ side.

Examples:

<u>Sec 5-4:</u>

After this section you will have completed the following Common Core State Standard(s):

• G.CO.10: Prove theorems about triangles

And will be improving your skills in the following Mathematical Practice(s):

2. Reason abstractly and quantitatively

3. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Write indirect algebraic proofs
- Write indirect geometric proofs

Indirect Proofs: To write an		or proof by
	, assume the	of what you
want to prove and show that	this leads to a	
(something that's impossible), so what you v	wanted to prove must be

_____•

Example:

Prove a triangle can't have more than one obtuse angle.

1. Assume.....

2. This is impossible because.....

3. Therefore,

<u>Sec 5-5:</u>

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles
- G.MG.3: Apply geometric methods to solve problems

And will be improving your skills in the following Mathematical Practice(s):

- 1. Make sense of problems and persevere in solving them
- 2. Reason abstractly and quantitatively

Specifically, you should be able to:

- Use the triangle inequality theorem to identify possible triangles
- Prove triangle relationships using the triangle inequality theorem

Triangle Inequality Theorem: The	of any two sides of a
----------------------------------	-----------------------

triangle is always _____

Example:

1. If the three sides of a triangle are 5, 11, and x, what is the range of possible values for x?

<u>Sec 5-6:</u>

After this section you will have completed the following Common Core State Standard(s):

• G.CO.10: Prove theorems about triangles

And will be improving your skills in the following Mathematical Practice(s):

- 1. Make sense of problems and persevere in solving them
- 2. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Apply the hinge theorem and its converse to make comparisons in triangles
- Prove triangle relationships using the hinge theorem or its converse

The Hinge Theorem: If two triangles have 2 pairs of congruent sides then the triangle that has the

_____ will have the

Converse of the Hinge Theorem: If t	wo triangles
have 2 pairs of congruent sides then	the triangle that
has the	will
have the	

Examples: