\qquad

Sec 5-1:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles
- G.MG.3: Apply geometric methods to solve problems

And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them
2. Construct viable arguments and critique the reasoning of others Specifically, you should be able to:

- Identify and use perpendicular bisectors in triangles
- Identify and use angle bisectors in triangles

Perpendicular Bisector Thm: If a point on the perpendicular bisector of a segment then it is \qquad from the \qquad of the segment.

Converse of Perpendicular Bisector Thm: If a point is
\qquad from the endpoints of a segment then it is on the \qquad of the segment

- \qquad lines are three or more lines that intersect at the same point.

Circumcenter Thm: The \qquad of a triangle intersect at the
\qquad , which is equidistant from the
\qquad of the triangle

Examples:

1.

2. A triangular-shaped garden is shown. Can a fountain be placed at the circumcenter and still be inside the garden?

Angle Bisector Thm: If a point is on the bisector of an angle, then it is \qquad from the
\qquad of the angle.

Converse of Angle Bisector Thm: If a point is in the interior of and angle and is \qquad from the of the angle, then it is on the of an angle.

Incenter Thm: The \qquad of a triangle intersect at the \qquad , which is equidistant from the \qquad of the triangle.

Examples:

3.

4. R is the circumcenter of $\triangle O P Q, O S=10, Q R=$ 12 and $\mathrm{PQ}=22$.

Find:
OP
RP

TR
SR
5. The angle bisectors of $\triangle A B C$ meet at $P, P R=3$ and $P C=5$. Find $Q C$.
6. Find:

EG

ED
HD
FD
$\angle G D E$

Sec 5-2:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles
- G.MG.3: Apply geometric methods to solve problems

And will be improving your skills in the following Mathematical Practice(s):
3. Construct viable arguments and critique the reasoning of others
6. Attend to precision

Specifically, you should be able to:

- Identify and use medians in triangles
- Identify and use altitudes in triangles

A \qquad of a triangle connects the \qquad of one side to the opposite \qquad .

- The centroid is the point of concurrency of the

\qquad of a triangle

Centroid Thm: The

\qquad of a triangle intersect at the \qquad . The distance from vertex to the
centroid of the triangle is \qquad the length of the whole median. [Thus the distance from the midpoint to the centroid is \qquad the length of the whole median.

- The centroid is the \qquad or
\qquad of the triangle.

An \qquad of a triangle is \qquad to one side and intersects the opposite
\qquad .

The \qquad of a triangle intersect at the

\qquad .

Examples:

1. Let P be the centroid of $\triangle X Y Z$. If $Y P=3 x+3$ and $Y V=7 x-13$, find x and the length of $P V$.

2. An artist is designing a sculpture that balances a triangle on top of a pole. In the artist's design on the coordinate plane, the vertices are located at (1, $4),(3,0)$, and $(3,8)$. What are the coordinates of the point where the artist should place the pole under the triangle so that it will balance?

The vertices of $\Delta H I J$ are $H(1,4), I(-1,-0)$, and $J(4$, 1). Find the coordinates of the orthocenter of $\Delta H I J$.

ConceptSummary Special Segments and Points in Triangles

Name	Example	Point of Concurrency	Special Property	Example
perpendicular bisector		circumcenter	The circumcenter P of $\triangle A B C$ is equidistant from each vertex.	
angle bisector		incenter	The incenter Q of $\triangle A B C$ is equidistant from each side of the triangle.	
median		centroid	The centroid R of $\triangle A B C$ is two thirds of the distance from each vertex to the midpoint of the opposite side.	
altitude		orthocenter	The lines containing the altitudes of $\triangle A B C$ are concurrent at the orthocenter S.	

Sec 5-3:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles

And will be improving your skills in the following Mathematical Practice(s):
2. Make sense of problems and persevere in solving them
4. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Apply the triangle sum theorem
- Apply the exterior angle theorem

Exterior Angle Inequality: The measure of an exterior angle of a triangle is greater than the measure of \qquad .

Theorems involving unequal sides or angles:

The \qquad side of a triangle is always across from the ___ angle, and the side is always across from the
\qquad

The \qquad angle of a triangle is always across from the \qquad side, and the \qquad angle is always across from the
\qquad

Examples:

Sec 5-4:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles

And will be improving your skills in the following Mathematical Practice(s):
2. Reason abstractly and quantitatively
3. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Write indirect algebraic proofs
- Write indirect geometric proofs

Indirect Proofs: To write an \qquad or proof by , assume the \qquad of what you
want to prove and show that this leads to a \qquad (something that's impossible), so what you wanted to prove must be
\qquad .

Example:

Prove a triangle can't have more than one obtuse angle.

1. Assume.....
2. This is impossible because.....
3. Therefore,

Sec 5-5:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles
- G.MG.3: Apply geometric methods to solve problems

And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively

Specifically, you should be able to:

- Use the triangle inequality theorem to identify possible triangles
- Prove triangle relationships using the triangle inequality theorem

Triangle Inequality Theorem: The \qquad of any two sides of a triangle is always \qquad .

Example:

1. If the three sides of a triangle are 5,11 , and x, what is the range of possible values for x ?

Sec 5-6:

After this section you will have completed the following Common Core State Standard(s):

- G.CO.10: Prove theorems about triangles

And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them
2. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Apply the hinge theorem and its converse to make comparisons in triangles
- Prove triangle relationships using the hinge theorem or its converse

The Hinge Theorem: If two triangles have 2 pairs of congruent sides then the triangle that has the
\qquad will have the

Converse of the Hinge Theorem: If two triangles

have 2 pairs of congruent sides then the triangle that has the ___ will have the

Examples:

