Honors Geometry

Ch 6 Notes Packet

Sec 6.1:

After this section you will have completed the following Common Core State Standard(s):

- **G.MG.1: Use geometric shapes, their measures and their properties to describe objects** And will be improving your skills in the following Mathematical Practice(s):
 - 4. Model with mathematics
 - 3. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Find and use the sum of the measures of the interior angles of a polygon
- Find and use the sum of the measures of the exterior angles of a polygon

n	sum of interior angles	one interior angle	one exterior angle	sum of exterior angles
3	digics		ungie	
4				
5				
6				
n				

The sum of the measures of the interior angles of a polygon with n sides is

The measure of one interior angle in a <u>regular</u> polygon is

The sum of the measures of the exterior angles of a polygon is always _____.

The measure of one exterior angle of a <u>regular</u> polygon is ______.

Examples:

Sec 6.2 & 3:

After this section you will have completed the following Common Core State Standard(s):

• G.CO.11: Prove theorems about parallelograms

And will be improving your skills in the following Mathematical Practice(s):

4. Model with mathematics

3. Construct viable arguments and critique the reasoning of others

Specifically, you should be able to:

- Recognize and apply the properties of sides and angles and diagonals of parallelograms
- Recognize conditions that ensure a quadrilateral is a parallelogram
- Prove that a set of points forms a parallelogram in the coordinate plane

Dfn: Parallelogram: a quadrilateral with_

Properties of Parallelogram Theorems:

If a quadrilateral is a parallelogram then...

The converse of most of these are true. See below... :)

If any of the following are true, then a quadrilateral is a parallelogram.....

Examples:

<u>Sec 6.4:</u>

After this section you will have completed the following Common Core State Standard(s):

- G.CO.11: Prove theorems about parallelograms
- G.GPE.4: Use coordinates to prove simple geometric theorems algebraically
- And will be improving your skills in the following Mathematical Practice(s):
 - 3. Construct viable arguments and critique the reasoning of others
 - 5. Use appropriate tools strategically

Specifically, you should be able to:

- Recognize and apply the properties rectangles
- Determine whether parallelograms are rectangles

Dfn: Rectangle: a parallelogram with _____

By definition, since a rectangle is a parallelogram it has all the characteristics of a parallelogram PLUS the distinguishing characteristic of being a rectangle:

- •
- •
- •

Properties of a Rectangle:

A parallelogram is a rectangle if and only if

_____, and

Examples:

<u>Sec 6.5:</u>

After this section you will have completed the following Common Core State Standard(s):

- G.CO.11: Prove theorems about parallelograms
- G.GPE.4: Use coordinates to prove simple geometric theorems algebraically

And will be improving your skills in the following Mathematical Practice(s):

2. Reason abstractly and quantitatively

3. Construct viable arguments and critique the reasoning of others Specifically, you should be able to:

- Recognize and apply the properties of rhombi and squares
- Determine whether quadrilaterals are rectangles, rhombi or squares

Dfn: Rhombus: a parallelogram with

A rhombus has all the properties of a parallelogram + the following properties:

 Properties of Rhombii: A parallelogram is a rhombus if and only if . 	
 A parallelogram is a rhombus if and only if 	
Dfn: Square: a quadrilateral with	

A quadrilateral is a ______ if and only if it is a ______ and a _____ . (Thus it has all of the properties of those shapes.)

Examples:

<u>Sec 6.6:</u>

After this section you will have completed the following Common Core State Standard(s):

- G.GPE.4: Use coordinates to prove simple geometric theorems algebraically
- G.MG.3: Apply geometric methods to solve problems

And will be improving your skills in the following Mathematical Practice(s):

 Make sense of problems and persevere in solving th Reason abstractly and quantitatively 	lem	
Specifically, you should be able to:		
 Recognize and apply the properties of trapezoids and 	kites	
Dfn: Trapezoid: a quadrilateral with		
Diff. Hapezolu. a quadrilateral with		
•		
A trapezoid is <u>isosceles</u> if its		
·································		Δ
	-	
Theorems: A trapezoid is isosceles if and only if	r:	
•		
		2
•		
		2
Dfn: The of a trapezoid	connects the	
of the of the	e trapezoid.	
Trapezoid Midsegment Theorem: The midsegn	nent	
· · · · ·	o the	
and its length is		
of the bases		
Dfn: Kite: A quadrilateral with		< < >
	\leq	\geq
	\sim	
	<u>^</u>	
Theorems: If a quadrilateral is a kite then:		
		\mathbf{i}
•		
		/
	$\langle \rangle$	/
•	\setminus / \setminus /	
	\vee \vee	

Examples: