\qquad

Honors Geometry

Ch 9 Notes Packet

Sec 9.1: Reflections

After this section you will have completed the following Common Core State Standard(s):

- G.CO.4: Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
- G.CO.5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
And will be improving your skills in the following Mathematical Practice(s):

5. Use appropriate tools strategically
6. Look for and make use of structure

Specifically, you should be able to:

- Draw reflections
- Determine coordinates of reflections and draw reflections in the coordinate plane

A \qquad is an operation that maps a pre-image onto an image
\qquad = original figure
\qquad = new figure after the transformation

Notation:

Types of transformations

| Type
 Description
 in a line | REFLECTION
 about a point | TRANSLATION
 (left/ right,
 up/down) | DILATION
 scale factor
 determines
 reduction v.
 enlargment |
| :--- | :---: | :---: | :---: | :---: |

\qquad
isometries

An \qquad (aka RIGID TRANSFORMATION) is a transformation that preserve lengths, angle measures, parallel lines, and distance between points. [DISTANCE FORMULA!!] Examples:

are rigid transformations (that means reflections are ISOMETRIES) where an image is mirrored across a line called the \qquad .

Remember: Isometries are transformations that preserve LENGTH

A reflection in a line is a function that maps every preimage point P across line m to its image point P^{\prime} so that:

- If the preimage P is on line m, the preimage and image \qquad
- If P is not on line m, then line m is the perpendicular bisector of \qquad

Examples:

Exit Ticket:

How would you find a:
A. Reflection in x-axis
B. Reflection in y-axis
C. Reflection in $y=x$
D. Reflection over any horizontal line
E. Reflection over any vertical line

Sec 9.2: Translations

After this section you will have completed the following Common Core State Standard(s):

- G.CO.4: Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
- G.CO.5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

And will be improving your skills in the following Mathematical Practice(s):
5. Use appropriate tools strategically
4. Model with mathematics

Specifically, you should be able to:

- Draw translations
- Determine coordinates of translations and draw translations in the coordinate plane

A TRANSLATION (aka \qquad) is a transformation that maps points each point to its image along a \qquad such that:

- Each segment connecting a preimage point to an image point has the same length as the vector
- The connecting segment is parallel to the vector

Examples:

1.
2.

Sec 9.3: Rotations

After this section you will have completed the following Common Core State Standard(s):

- G.CO.4: Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
- G.CO.5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
And will be improving your skills in the following Mathematical Practice(s):

5. Use appropriate tools strategically

2. Reason abstractly and quantitatively

Specifically, you should be able to:

- Draw rotations
- Determine coordinates of rotations and draw rotations in the coordinate plane
are rigid transformations (ISOMETRIES!) where a figure is turned
about a fixed point called \qquad . The rays connecting a point to the center and the image point to the center create and angle called the \qquad .

Plot

$A(2,-2) \quad B(4,1) \quad C(5,1) \quad D(5,-1)$

Find the image points when Fig. $A B C D$ is rotated clockwise 90 about the origin

Find the image points when Fig. $A B C D$ is rotated counter-clockwise 90ㅇabout the origin

To rotate figures in an angle other than 90 degrees, use the rotation matrix:
$\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

To rotate figures around a point other than the origin:

Examples:

Sec 9.4: Compositions of Functions

After this section you will have completed the following Common Core State Standard(s):

- G.CO.2: Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
- G.CO. 5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them
2. Model with mathematics

Specifically, you should be able to:

- Draw and determine coordinates of glide reflections and other compositions of isometries in the coordinate plane
- Draw and determine coordinates of reflections in parallel and intersecting lines

When a translation is applied to a figure and then another translation is applied to is image a COMPOSITION OF TRNASFORMATIONS is the result.

A GLIDE REFLECTION is composition of a translation and THEN a reflection in a line that is parallel to translation vector.

Thm 9.1:(Composition Theorem) The composition of two or more isometries is an isometry.
Thm 9.2: The composition of 2 reflections in 2 parallel lines can be described by a translation vector that is:
\bullet \qquad to the 2 lines
\bullet \qquad between the 2 lines

Thm 9.3: The composition of 2 reflections in intersecting lines can be described by a rotation:

- Around \qquad
- Through an angle that is \qquad

Examples:

1. Does the order of application of transformation in a composition matter?

Sec 9.5: Symmetry

After this section you will have completed the following Common Core State Standard(s):

- G.CO.3: Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
And will be improving your skills in the following Mathematical Practice(s):

4. Model with mathematics
5. Look for and express regularity in repeated reasoning

Specifically, you should be able to:

- Identify line and rotational symmetry details in $\mathbf{2}$ dimensional objects
- Identify line and rotational symmetry details in 3 dimensional objects

A figure has \qquad if you can map the figure onto itself by reflecting over a line called the \qquad .

A figure has \qquad if the figure can be mapped onto itself by a rotation of \qquad degrees.

The \qquad is the number of times the figure maps onto itself in a full 360 degree rotation.

The \qquad (AKA \qquad
is the smallest angle the figure can be rotated so it maps onto itself.

3-D symmetry can also occur in 2 ways:

- \qquad : when the figure maps onto itself by a reflection in the plane

- \qquad : when the figure
maps onto itself by a 0 to 360 rotation in a line

Examples:

1.

Sec 9.6: Dilations

After this section you will have completed the following Common Core State Standard(s):

- G.CO.2: Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
- G.SRT.1: Understand similarity in terms of similarity transformations. Verify experimentally the properties of dilations given by a center and a scale factor:
a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.

And will be improving your skills in the following Mathematical Practice(s):

1. Make sense of problems and persevere in solving them
2. Use appropriate tools strategically

Specifically, you should be able to:

- Draw dilations
- Determine coordinates of translations and draw dilations in the coordinate plane

A DILATION/Scaling is a \qquad transformation where the IMAGE and

PREIMAGE are \qquad . Each dilation has a center C and a scale factor k that maps every point in the preimage to a point in the image.

A dilation with center C and positive scale factor k, where $k \neq 1$, is a function that maps preimage point P to its image P^{\prime} so:

- If the preimage point P and center C coincide then the preimage P and image P^{\prime} are the same point
OR
- If the preimage point P is NOT the center of the dilation, the P^{\prime} lies on $\overrightarrow{C P}$ and $C P^{\prime}=$ k(CP)

Reduction: \qquad

Enlargement: \qquad

Dilations in the coordinate plane -

- If the center is at the origin:
- If the center is NOT at the origin:

Examples:

1.
2. Draw a dilation of $\triangle A B C$ with $A(-2,1), B(-6,0)$, and $C(-1,-1)$ when the scale factor is $3 / 2$. A.
A. Center = origin

B. Center $=(-3,1)$

