Name_

Honors Algebra 2

Ch 8(pt 2) Notes Packet

Section 8.5: Solving Rational Equations and Inequalities

We have worked with rational expressions and functions in the following ways***:

- Simplifying
- Adding and subtracting
- Multiplying and dividing (including complex fractions)
- Transformations of f(x) = 1/x
- Graphing: including vertical/ horizontal asymptotes, holes, zeros...
- Direct, inverse and joint variation

*** can you do all these things? If not, REVIEW from last semester!

Now we will be SOLVING rational equations for the value(s) of x that makes the equations true. Knowing what you do about solving fractions (and since solving fractions is a similar process to solving rationals), briefly jot down your plan for solving in the margin before trying out your plan:

Ex1: Solve for x. Box final answers.

	3	9	ъ 1 ⁸	3
Α.	$\overline{x+1} =$	4 <i>x</i> +5	B. $1 - \frac{1}{x-5}$	$=\frac{1}{x}$

C.
$$\frac{5x}{x-2} = 7 + \frac{10}{x-2}$$
 D. $\frac{6}{x-3} = \frac{8x^2}{x^2-9} - \frac{4x}{x+3}$

As you may have noticed, sometimes solving rational equations requires extensive manipulation which creates ______, that are not solutions to the given problem. You must always check for these before providing your final answers. <

Ex2: Applications

- A. The coolant in a car radiator is a mixture of pure antifreeze and water. The recommended mixture for your car is 50% antifreeze. If you have a mixture of 7 liters of coolant that is 40% antifreeze, how much pure antifreeze should you add to the mixture to bring it up to the recommended level?
- B. Natalia can complete an inventory of a stock room in 8 hours. When Natalia and Antonio work together, they can finish in 4 ½ hours. How long would it take Antonio to complete the stock room inventory alone?

Solving Rational Inequalities:

- Rewrite the inequality so that one side = _____
- Write the other side as a single simplified
- Identify all ______ (x-values where numerator and denominator = 0)
 Using a number line, ______ in each interval created by the critical values
- Write inequalities that express the

Ex3: Solve the inequality algebraically

A.
$$\frac{6}{x-2} \ge -4$$

$$B. \quad \frac{5}{x+3} \ge \frac{4}{x+2}$$

Try This #1:
A.
$$\frac{x-3}{x+5} = \frac{x}{x+2}$$

B.
$$\frac{6x}{x+4} + 4 = \frac{2x+2}{x-1}$$

Try This #2:

An alloy is formed by mixing two or more metals. Sterling silver is an alloy of 92.5% pure silver and 7.5% copper. Jewelry silver is an alloy of 80% pure silver and 20% copper. How much pure silver should you mix with 15 ounces of jewelry silver to make sterling silver?

Try This #3: Solve the inequality σ

$$\frac{9}{x+3} > 6$$

Section 8.6: Radical Expressions and Rational Exponents

The nth root of a real number *a* is written as:

where n = & a =

Principal square root =

The number and type of real roots is determined by ______ & ______

INDEX	RADICAND	# of Real Roots

Rational Exponent: exponents written as a fraction $\frac{m}{n}$, where m & n integers and $n \neq 0$

PROPERTIES of N th ROOTS		Assume positive values
Product Property of Roots: (n th root of a product = product of n th roots)	$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	$\sqrt[3]{16x^5}$
Quotient Property of Roots: (n th root of a quotient = quotient of n th roots)	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	$\sqrt[4]{\frac{81}{x^4}}$
$n^{th} \operatorname{root} \rightarrow \frac{1}{n}$ as exponent	$a^{\frac{1}{n}} = \sqrt[n]{a}$	$16^{\frac{1}{4}}$
n th root raised to power of m $\rightarrow \frac{m}{n}$ as exponent	$a^{rac{m}{n}}=\sqrt[n]{a^m}$	$8^{\frac{2}{3}}$

Ex 1: Simplify. Assume positive values.

Α.

$$\sqrt[4]{\frac{16x^8}{5}}$$
B. $\sqrt[3]{7} \cdot \sqrt[3]{x^4}$

C.
$$(-32)^{\frac{3}{5}}$$
 D. $\sqrt[8]{12^4}$

Review:	
Product of Powers: if you are multiplying with the	$a^m \cdot a^n = a^{m+n}$
same $ ightarrow$ add exponents	
Quotient of Powers: if you are dividing with the	$a^m - a^{m-n}$
same $ ightarrow$ subtract exponents	$\frac{1}{a^n} - a$
Power of Product/Quotient: product/quotient	$(a \cdot b)^m = a^m \cdot b^m$ OB $\left(\frac{a}{a}\right)^m = \frac{a^m}{a^m}$
taken to a power $ ightarrow$ distribute exponent	$(a \ b) = a \ b On (b) = b^m$
Power of Power: raising one power to another	$(a^m)^n = a^{m \cdot n}$
power \rightarrow multiply exponents	

Ex 2: Simplify.

A. $7\frac{7}{9} \cdot 7\frac{11}{9}$	B. $(-8)^{-\frac{1}{3}}$	C. $16^{\frac{3}{4}}$	D. $\left(c_{4} \frac{1}{2} \right)^{\frac{1}{2}}$
		$16^{\frac{5}{4}}$	$\begin{pmatrix} 04^3 \end{pmatrix}$

E. $\frac{\sqrt{9a^5}}{(128b^4)^{\frac{1}{2}}}$ F. $(\sqrt{5} - \sqrt{8})(\sqrt{5} + \sqrt{2})$

Ex 3: Applications

Radium-226 is a form of a radioactive element that decays over time. An initial sample in grams decays over t years to an ending amount using the function $A(x) = 500(2)^{-t/1600}$. How much Radium-266 is left after 800 years? Round to tenths.

Try This #4:

A. List all real 4th roots of 64 B. List all real cube roots of -216 C. List all real 4th roots of -1024

Try This #5: Simplify. Assume positive values.

A.	$\sqrt[4]{243x^{12}}$	В.	$625^{\frac{3}{4}}$	C.	$(12)^{\frac{1}{4}}$
					$\sqrt[4]{9a^3}$

Section 8.7: Radical Functions

A **RADICAL FUNCTION** has a radical expression in its function rule.

Each nth root has a separate parent function. So, a square root parent function is $f(x) = \sqrt{x}$ and a cube root parent function is $f(x) = \sqrt[3]{x}$.

Radical functions are initially formed by finding the inverse of a polynomial.

 _			 	 		

Transformations:

Transformations of t	Summary		
Transformation	f(x) Notation	Examples	Summary.
Vertical translation	f(x) + k	$y = \sqrt{x} + 3$ 3 units up	
		$y = \sqrt{x} - 4$ 4 units down	
Horizontal translation	f (x - h)	$y = \sqrt{x-2}$ 2 units right $y = \sqrt{x+1}$ 1 unit left	f(x) =
Vertical stretch/compression	af(x)	$y = 6\sqrt{x} \text{vertical stretch by 6}$ $y = \frac{1}{2}\sqrt{x} \text{vertical}$ compression by $\frac{1}{2}$	
Horizontal stretch/ compression	$f\left(\frac{1}{b}x\right)$	$y = \sqrt{\frac{1}{5}x}$ horizontal stretch by 5 $y = \sqrt{3x}$ horizontal compression by $\frac{1}{3}$	
Reflection	-f(x)	$y = -\sqrt{x}$ across x-axis	
	f(-x)	$y = \sqrt{-x}$ across y-axis	

Ex 1: Describe the transformations from $f(x) = \sqrt{x}$. State the domain and range. A. $g(x) = \sqrt{x+3}$ B. $g(x) = 2\sqrt{-x} + 1$

Ex 2: Write the daughter function if the parent function is a cubic function that has been stretched horizontally by a factor of 5, reflected over the x axis and translated 4 units down.

GRAPHING RADICAL INEQUALITIES:

- Graph boundary curve with appropriate solid/dashed line
- Test points to determine shading

Ex 3: Graph
$$y > 2\sqrt{x-3}$$

Try This #6: Describe the transformation from a square root parent function. State the domain and range.

A.
$$g(x) = \sqrt{x} + 5$$
 B. $g(x) = -\sqrt{x-4}$

Try This #7: Graph $y = \sqrt[3]{x} - 1$

Section 8.8: Solving Radical Equations and Inequalities

A **RADICAL EQUATION** is an equation that has a variable located within the radicand to solve for.

To solve a radical equation (or an equation with rational exponents) some of the following solving strategies may be used:

- Isolate the radical, if possible
- Raise both sides of the equation to the power of the index of the radical or raise both sides of the equation to the reciprocal of the rational exponent [Recognize that extraneous solutions may be introduced]
- Convert between rational exponents and radicals
- Simplify by expanding binomials and trinomials using Pascal's triangle or box method
- CHECK YOUR SOLUTIONS!!!

Ex 1: Solve.

A. $5 + \sqrt{x+1} = 16$

B. $\sqrt{-3x + 33} = 5 - x$

$$\mathsf{C}. \quad \sqrt{7x+2} = 3\sqrt{3x-2}$$

D.
$$2x = (4x + 8)^{\frac{1}{2}}$$

Solutions of RADICAL INEQUALITIES can be found algebraically or graphically. Ex 2: Solve $\sqrt{x-3} + 2 \le 5$.

Try This # 8: Solve. A. $7\sqrt[3]{5x-7} = 84$

B. $(5x+7)^{\frac{1}{3}} = 3$

Try This Answers:

1A: x = -1	5A: $3x^4 \cdot \sqrt[4]{3}$	#7:
1B: x = -3/2 & 2	5B: 125	
#2: 25 oz	5C: $\frac{\sqrt[4]{2a}}{a}$	-4 -2 0 2 4
#3: -3 < x < -3/2	6A: vertical shift up 5, D: [0, ∞), R: [5, ∞)	2
4A: ±2√2	6B: reflection over x-axis	
4B: -6	horizontal shift right 4	8A: x = 347
4C: no real	D: [4, ∞), R: (∞, 0]	8B: x = 4
solutions		