\qquad

Honors Algebra 2

Ch 8(pt 2) Notes Packet

Section 8.5: Solving Rational Equations and Inequalities

We have worked with rational expressions and functions in the following ways***:

- Simplifying
- Adding and subtracting
- Multiplying and dividing (including complex fractions)
- Transformations of $f(x)=1 / x$
- Graphing: including vertical/ horizontal asymptotes, holes, zeros...
- Direct, inverse and joint variation
*** can you do all these things? If not, REVIEW from last semester!

Now we will be SOLVING rational equations for the value(s) of x that makes the equations true. Knowing what you do about solving fractions (and since solving fractions is a similar process to solving rationals), briefly jot down your plan for solving in the margin before trying out your plan:

Ex1: Solve for x . Box final answers.
A. $\frac{3}{x+1}=\frac{9}{4 x+5}$
B. $1-\frac{8}{x-5}=\frac{3}{x}$
C. $\frac{5 x}{x-2}=7+\frac{10}{x-2}$
D. $\frac{6}{x-3}=\frac{8 x^{2}}{x^{2}-9}-\frac{4 x}{x+3}$

As you may have noticed, sometimes solving rational equations requires extensive manipulation which creates \qquad , that are not solutions to the given problem. You must always check for these before providing your final answers.

Ex2: Applications

A. The coolant in a car radiator is a mixture of pure antifreeze and water. The recommended mixture for your car is 50% antifreeze. If you have a mixture of 7 liters of coolant that is 40% antifreeze, how much pure antifreeze should you add to the mixture to bring it up to the recommended level?
B. Natalia can complete an inventory of a stock room in 8 hours. When Natalia and Antonio work together, they can finish in $41 / 2$ hours. How long would it take Antonio to complete the stock room inventory alone?

Solving Rational Inequalities:

- Rewrite the inequality so that one side = \qquad
- Write the other side as a single simplified \qquad
- Identify all \qquad (x-values where numerator and denominator $=0$)
- Using a number line, \qquad in each interval created by the critical values
- Write inequalities that express the \qquad

Ex3: Solve the inequality algebraically

A. $\frac{6}{x-2} \geq-4$
B. $\frac{5}{x+3} \geq \frac{4}{x+2}$

Try This \#1:

A. $\frac{x-3}{x+5}=\frac{x}{x+2}$
B. $\frac{6 x}{x+4}+4=\frac{2 x+2}{x-1}$

Try This \#2:

An alloy is formed by mixing two or more metals. Sterling silver is an alloy of 92.5% pure silver and 7.5% copper. Jewelry silver is an alloy of 80% pure silver and 20% copper. How much pure silver should you mix with 15 ounces of jewelry silver to make sterling silver?

Try This \#3: Solve the inequality
$\frac{9}{x+3}>6$

Section 8.6: Radical Expressions and Rational Exponents

The $n^{\text {th }}$ root of a real number a is written as:
where $\mathrm{n}=$
$\& \mathrm{a}=$

Principal square root $=$
The number and type of real roots is determined by \qquad \& \qquad

INDEX	RADICAND	\# of Real Roots

Rational Exponent: exponents written as a fraction $\frac{m}{n}$, where m \& n integers and $\mathrm{n} \neq 0$

PROPERTIES of $\mathbf{N}^{\text {th }}$ ROOTS

Product Property of Roots: ($\mathrm{n}^{\text {th }}$ root of a product = product of $\mathrm{n}^{\text {th }}$ roots)	$\sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$	$\sqrt[3]{16 x^{5}}$
Quotient Property of Roots: ($\mathrm{n}^{\text {th }}$ root of a quotient $=$ quotient of $\mathrm{n}^{\text {th }}$ roots)	$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	$\sqrt[4]{\frac{81}{x^{4}}}$
$\mathrm{n}^{\text {th }}$ root $\rightarrow \frac{1}{n}$ as exponent	$a^{\frac{1}{n}}=\sqrt[n]{a}$	$16^{\frac{1}{4}}$
$\mathrm{n}^{\text {th }}$ $\frac{m}{n}$ n^{2}	$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$	$8^{\frac{2}{3}}$

A. $\sqrt[4]{\frac{16 x^{8}}{5}}$
B. $\sqrt[3]{7} \cdot \sqrt[3]{x^{4}}$
C. $(-32)^{\frac{3}{5}}$
D. $\sqrt[8]{12^{4}}$

Review:

Product of Powers: if you are multiplying with the same \rightarrow add exponents	$a^{m} \cdot a^{n}=a^{m+n}$
Quotient of Powers: if you are dividing with the same \rightarrow subtract exponents	$\frac{a^{m}}{a^{n}}=a^{m-n}$
Power of Product/Quotient: product/quotient taken to a power \rightarrow distribute exponent	$(a \cdot b)^{m}=a^{m} \cdot b^{m} \quad$ OR $\quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
Power of Power: raising one power to another power \rightarrow multiply exponents	$\left(a^{m}\right)^{n}=a^{m \cdot n}$

Ex 2: Simplify.
A. $7 \frac{7}{9} \cdot 7^{\frac{11}{9}}$
B. $(-8)^{-\frac{1}{3}}$
C. $\frac{16^{\frac{3}{4}}}{16^{\frac{5}{4}}}$
D.
$\left(64^{\frac{1}{3}}\right)^{\frac{1}{2}}$
E. $\frac{\sqrt{9 a^{5}}}{\left(128 b^{4}\right)^{\frac{1}{2}}}$
F. $(\sqrt{5}-\sqrt{8})(\sqrt{5}+\sqrt{2})$

Ex 3: Applications

Radium-226 is a form of a radioactive element that decays over time. An initial sample in grams decays over t years to an ending amount using the function $A(x)=500(2)^{-t / 1600}$. How much Radium- 266 is left after 800 years? Round to tenths.

Try This \#4:

A. List all real $4^{\text {th }}$ roots of 64
B. List all real cube roots of -216
C. List all real $4^{\text {th }}$ roots of -1024

Try This \#5: Simplify. Assume positive values.
A. $\sqrt[4]{243 x^{12}}$
B. $625^{\frac{3}{4}}$
C. $\frac{(12)^{\frac{1}{4}}}{\sqrt[4]{9 a^{3}}}$

Section 8.7: Radical Functions

A RADICAL FUNCTION has a radical expression in its function rule.
Each $\mathrm{n}^{\text {th }}$ root has a separate parent function. So, a square root parent function is $f(x)=\sqrt{x}$ and a cube root parent function is $f(x)=\sqrt[3]{x}$.

Radical functions are initially formed by finding the inverse of a polynomial.

Transformations:

Transformations of the Square-Root Parent Function $f(x)=\sqrt{\boldsymbol{x}}$		
Transformation	$f(x)$ Notation	Examples
Vertical translation	$f(x)+k$	$\begin{array}{ll} y=\sqrt{x}+3 & 3 \text { units up } \\ y=\sqrt{x}-4 & 4 \text { units down } \end{array}$
Horizontal translation	$f(x-h)$	$\begin{array}{ll} y=\sqrt{x-2} & 2 \text { units right } \\ y=\sqrt{x+1} & 1 \text { unit left } \end{array}$
Vertical stretch/compression	af((x)	$\begin{array}{ll} y=6 \sqrt{x} & \text { vertical stretch by } 6 \\ y=\frac{1}{2} \sqrt{x} & \text { vertical } \\ & \text { compression by } \frac{1}{2} \end{array}$
Horizontal stretch/ compression	$f\left(\frac{1}{b} x\right)$	$y=\sqrt{\frac{1}{5} x}$ horizontal stretch by 5 $y=\sqrt{3 x}$ horizontal compression by $\frac{1}{3}$
Reflection	$\begin{aligned} & -f(x) \\ & f(-x) \end{aligned}$	$\begin{array}{ll} y=-\sqrt{x} & \text { across } x \text {-axis } \\ y=\sqrt{-x} & \text { across } y \text {-axis } \end{array}$

Summary:

Ex 1: Describe the transformations from $f(x)=\sqrt{\boldsymbol{x}}$. State the domain and range.
A. $g(x)=\sqrt{x+3}$
B. $g(x)=2 \sqrt{-x}+1$

Ex 2: Write the daughter function if the parent function is a cubic function that has been stretched horizontally by a factor of 5 , reflected over the x axis and translated 4 units down.

GRAPHING RADICAL INEQUALITIES:

- Graph boundary curve with appropriate solid/dashed line
- Test points to determine shading

Ex 3: Graph $y>2 \sqrt{x-3}$

Try This \#6: Describe the transformation from a square root parent function. State the domain and range.
A. $g(x)=\sqrt{x}+5$
B. $g(x)=-\sqrt{x-4}$

Try This \#7: Graph $y=\sqrt[3]{x}-1$

Section 8.8: Solving Radical Equations and Inequalities

A RADICAL EQUATION is an equation that has a variable located within the radicand to solve for.

To solve a radical equation (or an equation with rational exponents) some of the following solving strategies may be used:

- Isolate the radical, if possible
- Raise both sides of the equation to the power of the index of the radical or raise both sides of the equation to the reciprocal of the rational exponent [Recognize that extraneous solutions may be introduced]
- Convert between rational exponents and radicals
- Simplify by expanding binomials and trinomials using Pascal's triangle or box method
- CHECK YOUR SOLUTIONS!!!

Ex 1: Solve.

A. $5+\sqrt{x+1}=16$
B. $\sqrt{-3 x+33}=5-x$
C. $\sqrt{7 x+2}=3 \sqrt{3 x-2}$
D. $2 x=(4 x+8)^{\frac{1}{2}}$

Solutions of RADICAL INEQUALITIES can be found algebraically or graphically.
Ex 2: Solve $\sqrt{x-3}+2 \leq 5$.

Try This \# 8: Solve.
A. $7 \sqrt[3]{5 x-7}=84$
B. $(5 x+7)^{\frac{1}{3}}=3$

Try This Answers:

$1 \mathrm{~A}: \mathrm{x}=-1$	5A: $3 x^{4} \cdot \sqrt[4]{3}$	\#7:
1B: $x=-3 / 2$ \& 2	5B: 125	
\#2: 25 oz	$5 \mathrm{C}: \frac{\sqrt[4]{2 a}}{}$	$4{ }^{4}{ }^{-2}$
\#3: $-3<x<-3 / 2$	6A: vertical shift up 5, D: $0, \infty$, R: $[5, \infty$)	
4A: $\pm 2 \sqrt{ } 2$	6B: reflection over x -axis	
4B: -6	horizontal shift right 4	8A: $x=347$
4C: no real solutions	D: $[4, \infty)$, R: $(\infty, 0]$	$8 \mathrm{~B}: \mathrm{x}=4$

