Name_

Honors Algebra 2

Ch 10 Notes Packet

Section 10.1: Introduction to Conic Sections

Use the table on p. 724 to answer:

What is the midpoint formula?

What is the distance formula?

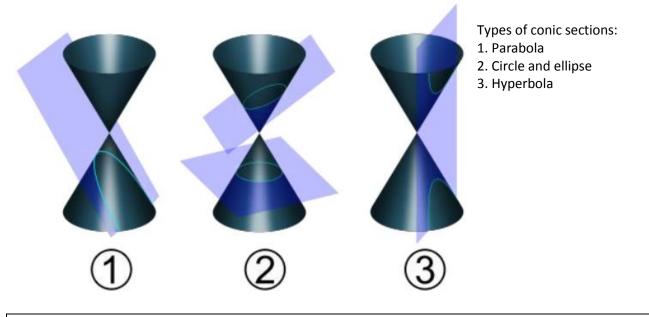
Examples:

A. Find the center and radius of a circle that has a diameter with endpoints of (2, 6) and (14, 22).

Β.

Section 10.2: Circles

Conic Sections: a **conic section** (or just **conic**) is a curve obtained by intersecting a cone with a plane. The conic sections were named and studied as long ago as 200 BC, when Apollonius of Perga undertook a systematic study of their properties. All the variations in the shape of a conic section can be obtained by varying the slope of the plane intersecting the conical surface.



Circle Vocab:

LOCUS: a set of points that satisfy a given set of conditions CIRCLE: locus of points in a plane at a given distance from a fixed point called the CENTER RADIUS: distance from the CENTER to any point on the circle CONCENTRIC CIRCLES: circles that have the same center but not the same radius TANGENT: a line in the same plane of a circle that intersects the circle at exactly one point. The tangent to a circle is perpendicular to the radius at the POINT OF TANGENCY

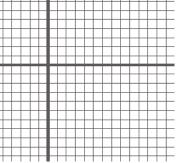
STANDARD FORM of the EQUATION of a CIRCLE: where (h,k) is the center & r = radius

RECOGNIZING THE EQUATION OF A CIRCLE:

*** Helpful Formulas to Recall/ Review: Distance Formula and Midpoint Formula

Ex1: Write the equation of the circle in standard form:

A. With center (4, -1) and radius 6 and then graph



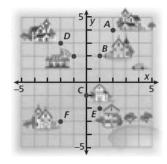
B. With center (- 4, 11) and containing (5, -1)

C. With diameter that has endpoints of (-1, 1) and (5, 13)

- **Ex2:** Interpret the difference in:
- A. $(x-h)^2 + (y-k)^2 = r^2$ vs $(x-h)^2 + (y-k)^2 \ge r^2$ vs $(x-h)^2 + (y-k)^2 > r^2$

B.
$$(x-h)^2 + (y-k)^2 < r^2$$
 vs $(x-h)^2 + (y-k)^2 > r^2$

Ex3: Raul and his friends are having a pizza party **A.** and will decide where to have the party based on the delivery area of the pizza restaurant. Suppose that the pizza restaurant is located at the point (-1, 2) and the letters represent the homes of Raul and his friends. Use the equation of a circle to find the houses that are within a 3-mile radius and will get free delivery.

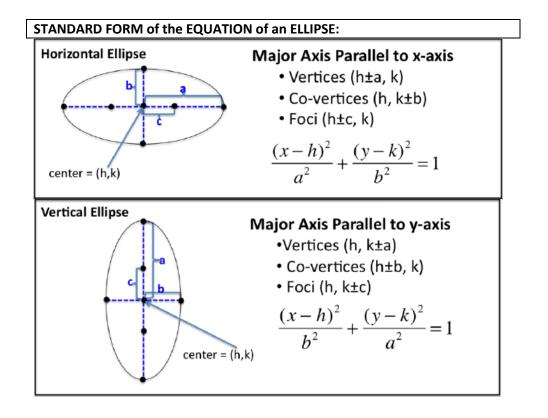


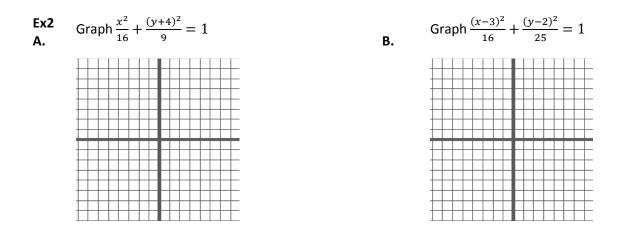
B. Use the map from Ex 3 A to determine which homes are within four miles of a restaurant located at (-1, 1).

Ex4: Write the y-intercept equation of the line tangent to circle $(x - 1)^2 + (y + 3)^2 = 13$ at (4, -5)

Ellipse Vocab: ELLIPSE: locus of all points in a plane such that the sum of the distances from two fixed points (foci) is constant An ellipse has two AXES OF SYMMETRY, the MAJOR AXIS & MINOR AXIS. The point where the two axes intersect is the **CENTER** of the ellipse and the center divides the major & minor axes into two congruent segments the major axis is the longest axis and it contains the **FOCI**. Its length is 2a and a is the distance from the • center to an end of the major axis the endpoints of the major axis are called vertices 0 the minor axis is the shortest axis and its length is 2b. b is the distance from the center to an end of the minor axis 0 the endpoints of the minor axis are called co-vertices the foci (plural form of **FOCUS**) are the two fixed points and can be found using the formula $c^2 = a^2 - b^2$ where c is the distance from the center to a focus point

RECOGNIZING THE EQUATION OF AN ELLIPSE:





- **Ex3:** Write the equation for each ellipse described.
- A. Center at origin, vertex (6, 0) & co-vertex (0, 4)

C. center is (-5, 1) its major axis is 10 units long and D. parallel to the x-axis and its minor axis is 6 units long

B. Center at origin, focus (0, 3) & co-vertex (5, 0)

D. Vertices (3, 6)&(3,-2) Foci (3, 5)&(3,-1)

HYPERBOLA VOCAB

HYPERBOLA: locus of all points in a plane such that the absolute value of the differences of the distance from two fixed points (foci) is constant \rightarrow d = | PF₁ – PF₂ |

- a hyperbola has two **AXES OF SYMMETRY**, the **TRANSVERSE AXIS & CONJUGATE AXIS.** The point where the two axes intersect is the **CENTER** of the hyperbola the center is also the midpoint of the segment whose endpoints are the foci
- the foci are the two fixed points and can be found using c² = a² + b² where c is the distance from the center to a focus point
- the endpoints of the transverse axis are called **VERTICES.** The transverse axis contains the vertices (and if extended, the foci also) and the length of the transverse axis is 2a
- the conjugate axis is perpendicular to the transverse axis at the center and separates the hyperbola into 2 **BRANCHES**. The endpoints of the conjugate axis are called **CO-VERTICES** and its length is 2b

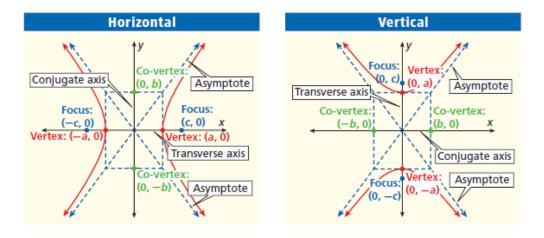
ASYMPTOTE: an imaginary line that a graph approaches but never reaches (as inputs get larger and larger or smaller and smaller)

TRANSVERSE AXIS	HORIZONTAL	VERTICAL
Equation	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$
Vertices	(h + a, k), (h - a, k)	(h, k + a), (h, k - a)
Foci	(h + c, k), (h - c, k)	(h, k + c), (h, k - c)
Co-vertices	(h, k + b), (h, k - b)	(h + b, k), (h - b, k)
Asymptotes	$y-k=\pm \frac{b}{a}(x-h)$	$y - k = \pm \frac{a}{b}(x - h)$

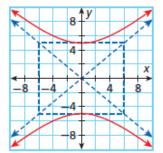
As the parameters change the hyperbola is transformed:

Parameter	Transformation
h	Translates the graph left for $h > 0$ and right for $h < 0$
k	Translates the graph up for $k > 0$ and down for $k < 0$
а	Stretches the graph in the direction of the transverse axis; as a increases, the vertices move farther apart.
b	Stretches the graph in the direction of the conjugate axis; as <i>b</i> increases, the co-vertices move farther apart.

RECOGNIZING THE EQUATION OF A HYPERBOLA:

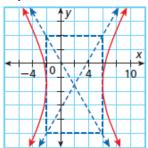


Ex1: Write the equation of the hyperbola shown/ described. Graph C & D.



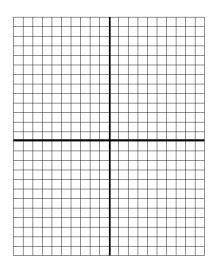
Α.

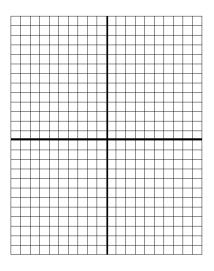
C. Center is (-2,3), has a horizontal transverse axis of D.12 units long and a conjugate axis of 20 units long



Β.

Vertices are (-4,2) and (-4,8) and whose conjugate axis is 10 units long.





Section 10.5: Parabolas

PARABOLA VOCAB

PARABOLA: locus of all points in a plane that are the same distance from a given point called the **FOCUS** to a given line called the **DIRECTRIX**

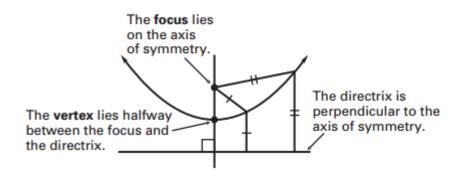
• p is the distance from the focus to the vertex and the distance from the vertex to the directrix

In the equation only one of the variables is squared

- if the parabola **opens up or down**, x is squared
- if the parabola **opens right or left**, y is squared

AXIS OF SYMMETRY: the line that passes through the vertex of the parabola and divides the parabola into two matching halves

- axis of symmetry is x = h if the parabola opens up or down
- axis of symmetry is y = k if the parabola opens right or left



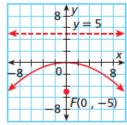
RECOGNIZING EQUATION OF A PARABOLA:

Standard Form	for the Equation of a l	Parabola Vertex at (h, k)	
AXIS OF SYMMETRY	HORIZONTAL $y = k$	$\begin{aligned} \text{VERTICAL} \\ x = h \end{aligned}$	
Equation			
Direction	Opens right if <i>p</i> > 0 Opens left if <i>p</i> < 0	Opens upward if $p > 0$ Opens downward if $p < 0$	
Focus	(h + p, k)	(h, k + p)	
Directrix	x = h - p	y = k - p	
Graph	$y = k$ $F(h + p, k)$ $(h, k)^{X}$ $x = h - p$	x = h $y + F(h, k + p)$ $(h, k) + y = k - p$ x	

Ex1: Find the coordinates of the vertex, value of p and state the direction of the opening for: **A.** $(x + 2) = \frac{1}{2} (y + 5)^2$ **B.** $(x - 3)^2 = -8(y - 4)$

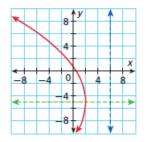
Ex2: Using the distance formula, write the equation of the parabola with a focus F(2, 4) and directrix y = -4.

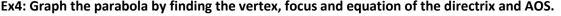
Ex3: Write the equation of the parabola shown/ described.

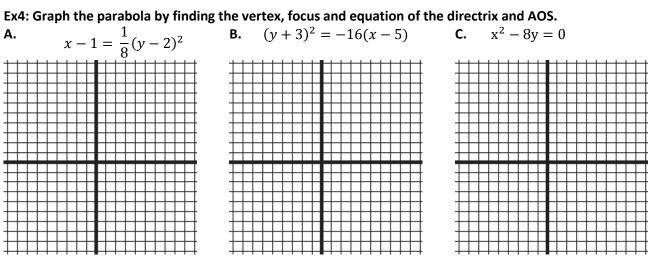


Α.

В.







Identifying Conics in Standard Form	
Circle:	Ellipse:
Hyperbola:	Parabola:

The **GENERAL FORM** of a conic section is $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ (where A, B, and C are not ALL equal to zero)

CONIC SECTION	COEFFICIENTS
Circle	$B^2 - 4AC < 0, B = 0, \text{ and } A = C$
Ellipse	$B^2 - 4AC < 0$ and either $B \neq 0$ or $A \neq C$
Hyperbola	$B^2 - 4AC > 0$
Parabola	$B^2 - 4AC = 0$

Ex1: Identify the conic section

A. $\frac{(y-5)^2}{36} + \frac{(x+2)^2}{16} = 1$

B. $16(x-1)^2 = 144 + 9(y-2)^2$

C.
$$\frac{(x-3)^2}{8} + \frac{(y-2)^2}{8} = \frac{16}{50}$$

D. $x+4 = \frac{(y-2)^2}{10}$

E.
$$\frac{(x-6)^2}{36} = \frac{(y+4)^2 + 16}{16}$$

F. $4x^2 - 10xy + 5y^2 + 12x + 20y = 0$

G. $12x^2 + 18y^2 + 24x - 30y - 50 = 0$ **H.** $9x^2 - 12xy + 4y^2 + 6x - 8y = 0$ ✓ General form is not easily graphed, so it is important to develop some skills to find the standard form of a conic section from the general form. We will begin to develop some of these skills now.

Ex2: Write the equation of the conic section in standard form.

A. $6y^2 - 24y = 9 - 12x^2 - 36$ **B.** $9x^2 - 16y^2 - 90x - 64y + 17 = 0$

C. $4x^2 + 4y^2 - 24x + 16y = -51$

D. $y^2 + 16x + 4y - 44 = 0$

Section 10.7: Solving Nonlinear Systems

A system of nonlinear equations is two or more equations (at least one of which is not a linear equation) that are being solved simultaneously.

***Note that in a nonlinear system, one or more of your equations can be linear, just not ALL of them.

- We will primarily use the **substitution method** to solve a non-linear system. However, sometimes the **elimination method** is a viable option as well.
- Recall that the solution to a non-linear system is **all the points of intersection** of the graphs of the equations. Therefore, since we now have more than just lines, we can have a variety of numbers of solutions. The graph can intersect once, twice, several times or not at all. To verify the solution(s) to a system, look at the graph.

Examples of nonlinear systems:

Ex1: Solve the nonlinear system	
A. $x^2 + y^2 = 100$	
y - x = 2	

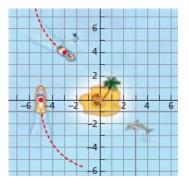
B. $x^2 + y^2 = 25$ $4x^2 + 9y^2 = 145$

C.	$x^2 + y^2 = 100$
	$y + 26 = \frac{1}{2}x^2$

D. $x^2 + 2y^2 = 12$ xy = 4

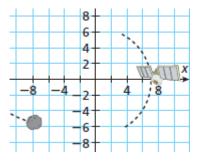
Ε.

A tour boat travels around a small island in a pattern that can be modeled by the equation $36x^2 + 25y^2 = 900$, with the island at the origin. Suppose that a fishing boat approaches the island on a path that can be modeled by the equation $y - 3 = \frac{1}{5}x^2$. Is there any danger of collision?



F.

Astronomy An asteroid is traveling toward Earth on a path that can be modeled by the equation $y = \frac{1}{28}x^2 - 7$. It approaches a satellite in orbit on a path that can be modeled by the equation $\frac{x^2}{49} + \frac{y^2}{51} = 1$. What are the coordinates of the points where the satellite and asteroid might collide?



Multi-Step The lake at a resort has an island near the center. A tour boat's path on the lake can be modeled by the equation $16x^2 + 9y^2 = 36$, with the island at the origin. If a canoe's path on the lake can be modeled by the equation $8x + 5y^2 = 20$, find the coordinates of the points on the lake where the boats might meet.

Try These: Solve the systems.

1.
$$\begin{cases} y = -4x \\ x + 1 = \frac{1}{8}y^2 \end{cases}$$
2.
$$\begin{cases} 4y = 5x \\ \frac{y^2}{9} - \frac{x^2}{9} = 1 \end{cases}$$
3.
$$\begin{cases} 21x - 14y = 0 \\ \frac{3x^2}{16} + \frac{y^2}{36} = 1 \end{cases}$$

4.
$$\begin{cases} x^2 + y^2 = 346 \\ x - 2 = \frac{1}{25}y^2 \end{cases}$$
5.
$$\begin{cases} x^2 - y^2 = 40 \\ y + 10 = \frac{1}{7}x^2 \end{cases}$$
6.
$$\begin{cases} y^2 + x^2 = 119 \\ x + 19 = \frac{1}{6}y^2 \end{cases}$$

7.
$$\begin{cases} x - y = 6 \\ x^2 + y^2 = 132 \end{cases}$$
8.
$$\begin{cases} y^2 = x^2 - 9 \\ x^2 + y^2 = 41 \end{cases}$$
9.
$$\begin{cases} (x - 3)^2 + y^2 = 17 \\ y + 7 = \frac{1}{2}(x - 3)^2 \end{cases}$$

10.
$$\begin{cases} 7x^2 - y^2 = -36 \\ x^2 - y^2 = -60 \end{cases}$$
 11.
$$\begin{cases} 3x^2 + 4y^2 = 1327 \\ x^2 + 2y^2 = 443 \end{cases}$$
 12.
$$\begin{cases} 8x^2 + 7y^2 = 2143 \\ x^2 + 5y^2 = -20 \end{cases}$$

13.

Jordan is jogging on a path modeled by the equation $x^2 + y^2 = 2500$. Katherine is jogging on a path modeled by the equation $\frac{y^2}{60^2} + \frac{x^2}{40^2} = 1$. At what points do their paths intersect?