Name__

Honors Algebra 2

Ch 6 (Part 1) Notes Packet

Section 6.1: Intro to Polynomials

Learning Target: We are learning about classifying, graphing and performing operations on polynomials.

Success Criteria:

- I can identify, evaluate, add, and subtract polynomials.
- I can classify and graph polynomials.

Monomials: Numbers, variables or a product of numbers and variables with ______ exponents.

		•		CIRCLE the	MONOMIALS	
х	2x ³ y	3/x	4 [×]	50	xγ	
	7	b) ^{3/4}	5xy	γz	3w ^{1/3}
½ a	gh²j∙k				2ab∙4cd	

Polynomials: a monomial or the sum or difference of monomials where each monomial of a polynomial is called a ______

				CIRCLE the POL	YNOMIALS
3x ⁵	$2x^3 - 4x^7$	5/a	5 ^x	$3x^2 - 4x^{-5}$	2x/y
7	,		z ^{1/4}	2x/3	-7
0.5a ⁶	$d^4 + 2d^3 - 14x$	g ^{1.5}	2b ³ – 5b	4c ⁵ – 7	$-2x^{20} - x$

CLASSIFYING POLYNOMIALS:

- 1- **BY DEGREE** is one way to classify polynomials
 - Degree of MONOMIALS: sum of all the exponents of all variables
 - Degree of POLYNOMIALS: degree of the term with _____ degree

Degree	Name	Example
0		
1		
2		
3		
4		
5		
n>5		

The degree of a polynomial is easy to find if polynomial is in ____

_____: polynomial written so terms are in order of descending degree

(highest to lowest)

: coefficient of the first term if polynomial is written in standard form

CLASSIFYING POLYNOMIALS (continued):

2- **BY NUMBER OF TERMS** is another way to classify polynomials

# of terms	Name	Example
0		
1		
2		
3		
4		
5		
n>5		

Ex1: Identify the degree of the monomial A. z^6

Ex2: State the leading coefficient, degree and number of terms. Classify/ name the polynomial. A. $8x^4 + 3x^2 - 4$ B. $1 - 3x^5$

B. $8xy^2$

Ex3: Add/ subtract the polynomials A. $(2x^3 + 9 - x) + (5x^2 + 4 + 7x + 3x^3)$ B. $(3 - 2x^2) - (x^3 + 2x^2 + 6 - x)$

Ex4: Graph on a graphing calculator. Describe graph, the real roots and other important features. A. $f(x) = 2x^3 - 3x + 1$

Ex5: The cost of manufacturing a certain product can be approximated by $f(x) = 3x^3 - 18x + 45$ where x is the number of units of the product in hundreds. Evaluate f(0) and f(200) and describe what the value represents.

YOU TRY:

1. Identify the degree of the monomial: A. 5.67

- B. a²bc³
- 2. State the leading coefficient, degree and number of terms. Classify/ name the polynomial. A. $2x^2$ B. $2x^2 - 4x^3 + 5x$
- 3. Add/ subtract the polynomials
A. $(5x 2x^3) (3x^3 + x^2 4x + 2)$ B. $(4x^3 + 8 3x) + (2x^2 + 9 + 6x + 3x^3)$
- 4. Graph $f(x) = 2x^3 2$ on a graphing calculator. Describe graph, the real roots and other important features.

Section 6.2: Multiplying Polynomials

Learning Target: We are learning about multiplying polynomials.

Success Criteria:

- I can multiply polynomials.
- I can use binomial expressions that are raised to positive integer powers.

Methods for multiplying polynomials:

1-

2-

Ex1: Multiply. Write in standard form.

- A. Use distributive method: fg^2 (f⁴ + 3f³g 3f²g² + fg³)
- B. Use box method: $(a 3) (2 5a + a^2)$

Ex2: A standard Burly Box is P ft by 3P ft by 4P ft. A large Burly Box has 1.5 ft added to each dimension. Write the volume function V(p) for the large box.

Ex 3: Find the product/ expand $(x + 2)^3$

YOU TRY: 1. Multiply $(y^2 - 7y + 5) (y^2 - y - 3)$ using BOTH methods. Write in standard form.

2. A small soup can has a radius of N inches and a height of 5N inches. A large soup can has 2 inches added to each dimension. Write the volume function V(n) for the large soup can. $[V_{cylinder} = \pi r^2 h]$

3. Find the product/ expand $(a + 2b)^3$

Polynomial Long Division

Ex1: A. $(x^2 + 5x - 28) \div (x - 3)$

B. $(-y^2 + 2y^3 + 25) \div (y - 3)$

Polynomial Synthetic Division

Ex2: A. $(3x^2 + 9x - 2) \div (x - \frac{1}{3})$ B. $(3x^4 - x^3 + 5x - 1) \div (x + 2)$

Remainder Theorem: If $P(x) \div (x - a)$, then the remainder r =______ This means that when "a" is plugged into the polynomial then the resulting P(a) and remainder r are exactly the same! Using synthetic substitution is the fastest way to apply the remainder theorem.

Ex 3: A. Find P(x) = $3x^5 - x^4 - 5x + 10$ for x = -2B. Find P(x) = $6x^4 - 25x^3 - 3x + 5$ for x = $-\frac{1}{3}$

Compare to actually plugging the value in for x:

Ex 4: Write an expression that represents the area of the top face of a rectangular prism when the height is x + 2 and the volume of the prism is $x^3 - x^2 - 6x$

YOU TRY:

1. Divide using long division: $(3x^3 - 2x^2 + 2x - 5) \div (x - 2)$

2. Divide using synthetic division: $(3x^2 + 10x + 8) \div (x + 2)$

3. Find $P(x) = 3x^5 + 4x^2 + x + 6$ for x = -1

Section 6.4: Factoring Polynomials

Learning Target: We are learning about factoring polynomials.

Success Criteria:

- I can use the Factor Theorem to determine the factors of a polynomial.
- I can factor the sum and difference of two cubes.

Factor Theorem: For any polynomial P(x), (x - a) is a factor of P(x) if and only if P(a) = 0

 $\mathsf{P}(\mathsf{x}) = \mathsf{x}^2 - 1$

P(1)=

P(-1) =

Therefore, (x - 1) and (x + 1) are factors

Ex1: Determine if the given binomial is a factor of P(x), if so write answer as a product. A. (x + 2), P(x) = $3x^4 + 6x^3 - 5x - 10$ B. (x + 1), P(x) = $x^2 - 3x + 1$

FACTORING POLYNOMIALS: some of the same skills used with quadratic factoring will be useful but we need to add new tools to the factoring toolbox!

• Factor by Grouping:

Ex2: A. $x^3 - x^2 - 25x + 25$

B. $2x^3 + x^2 + 8x + 4$

• Sum/ Difference of Cubes (special factoring rules)

Sum of 2 cubes:

Difference of cubes:

Ex3: A. $4x^4 + 108x$

B. 125d³ – 8

Ex4: The volume of a plastic storage box is modeled by the equation $V(x) = x^3 + 6x^2 + 3x - 10$. Find x for which V(x) = 0. (use graph to factor x)

YOU TRY

1. Determine if (x - 2) is a factor of $P(x) = 5x^3 + x^2 - 7$, if so write answer as a product.

2. Factor: $8y^3 - 4y^2 - 50y + 25$

3. Factor: 128x⁴ – 54x

**Read p. 432 example problem and solution #4 for understanding & attempt to explain to someone else.

YOU TRY answers:

Sec 6.1:

- 1. A. zero degree
 - B. 6th degree
- A. LC = 2, deg = 2, # terms = 1, name = quadratic monomial
 B. LC = -4, deg = 3, # terms = 3, name = cubic trinomial
- 3. $A. 5x^3 x^2 + 9x 2$ B. $7x^3 + 7x^2 + 3x + 17$
- 4. Graph starts down, increases, flattens out then increases again. It crosses the x-axis once so it has one real root.

```
Sec 6.2:
```

- 1. $y^4 8y^3 + 9y^2 + 16y 15$
- 2. $V(N) = \pi(5N^3 + 22N^2 + 28N + 8)$
- 3. $a^3 + 6a^2b + 12ab^2 + 8b^3$

Sec 6.3:

- 1. $3x^2 + 4x + 10 + \frac{15}{(x-2)}$
- 2. 3x 4 [using synthetic division and getting a remainder of zero means (x + 2) is a factor
- 3. P(-1) = 6

Sec 6.4:

- 1. R = 37 so (x 2) is NOT a factor
- 2. (2y-1)(2y-5)(2y+5)
- 3. $2x(4x-3)(16x^2+12x+9)$