\qquad

Section 6.1: Intro to Polynomials

Learning Target: We are learning about classifying, graphing and performing operations on polynomials.

Success Criteria:

- I can identify, evaluate, add, and subtract polynomials.
- I can classify and graph polynomials.

Monomials: Numbers, variables or a product of numbers and variables with \qquad exponents.

(1)		11			CIRCLE the MONOMIALS			
x	$2 x^{3} y$	3/x		$4^{\text {x }}$	50		$\mathrm{x}^{\text {y }}$	$3 w^{1 / 3}$
		$b^{3 / 4}$			$5 x y z$			
$1 / 2 \mathrm{a}$	$g h^{2} \mathrm{j} \cdot \mathrm{k}$				$2 \mathrm{ab} \cdot 4 \mathrm{~cd}$			

Polynomials: a monomial or the sum or difference of monomials where each monomial of a polynomial is called a \qquad

		11		CIRCLE the POLYNOMIALS	
$3 x^{5}$	$2 x^{3}-4 x^{7}$	5/a	$5^{\text {x }}$	$3 x^{2}-4 x^{-5}$	2x/y
		$z^{1 / 4}$		$2 \mathrm{x} / 3$	-7
$0.5 a^{6}$	$d^{4}+2 d^{3}-14 x$	$\mathrm{g}^{1.5}$	$\left\|2 b^{3}-5 b\right\|$	$4 c^{5}-7$	$-2 x^{20}-x$

CLASSIFYING POLYNOMIALS:

1- BY DEGREE is one way to classify polynomials

- Degree of MONOMIALS: sum of all the exponents of all variables
- Degree of POLYNOMIALS: degree of the term with \qquad degree

Degree	Name	Example
0		
1		
2		
3		
4		
5		
$n>5$		

The degree of a polynomial is easy to find if polynomial is in \qquad
\qquad : polynomial written so terms are in order of descending degree (highest to lowest)
\qquad : coefficient of the first term if polynomial is written in standard form

CLASSIFYING POLYNOMIALS (continued):

2- BY NUMBER OF TERMS is another way to classify polynomials

\# of terms	Name	Example
0		
1		
2		
3		
4		
5		
$n>5$		

Ex1: Identify the degree of the monomial
A. z^{6}
B. $8 x y^{2}$

Ex2: State the leading coefficient, degree and number of terms. Classify/ name the polynomial.
A. $8 x^{4}+3 x^{2}-4$
B. $1-3 x^{5}$

Ex3: Add/ subtract the polynomials
A. $\left(2 x^{3}+9-x\right)+\left(5 x^{2}+4+7 x+3 x^{3}\right)$
B. $\left(3-2 x^{2}\right)-\left(x^{3}+2 x^{2}+6-x\right)$

Ex4: Graph on a graphing calculator. Describe graph, the real roots and other important features.
A. $f(x)=2 x^{3}-3 x+1$

Ex5: The cost of manufacturing a certain product can be approximated by $f(x)=3 x^{3}-18 x+45$ where x is the number of units of the product in hundreds. Evaluate $f(0)$ and $f(200)$ and describe what the value represents.

YOU TRY:

$\begin{array}{ll}\text { 1. Identify the degree of the monomial: A. } 5.67 & \text { B. } a^{2} b c^{3}\end{array}$
2. State the leading coefficient, degree and number of terms. Classify/ name the polynomial.
A. $2 x^{2}$
B. $2 x^{2}-4 x^{3}+5 x$
3. Add/ subtract the polynomials
A. $\left(5 x-2 x^{3}\right)-\left(3 x^{3}+x^{2}-4 x+2\right)$
B. $\left(4 x^{3}+8-3 x\right)+\left(2 x^{2}+9+6 x+3 x^{3}\right)$
4. Graph $f(x)=2 x^{3}-2$ on a graphing calculator. Describe graph, the real roots and other important features.

Section 6.2: Multiplying Polynomials

Learning Target: We are learning about multiplying polynomials.

Success Criteria:

- I can multiply polynomials.
- I can use binomial expressions that are raised to positive integer powers.

Methods for multiplying polynomials:

1-

2-

Ex1: Multiply. Write in standard form.
A. Use distributive method: $\mathrm{fg}^{2}\left(\mathrm{f}^{4}+3 \mathrm{f}^{3} \mathrm{~g}-3 \mathrm{f}^{2} \mathrm{~g}^{2}+\mathrm{fg}{ }^{3}\right)$
B. Use box method: $(a-3)\left(2-5 a+a^{2}\right)$

Ex2: A standard Burly Box is $P \mathrm{ft}$ by 3 Pft by 4P ft. A large Burly Box has 1.5 ft added to each dimension. Write the volume function $V(p)$ for the large box.

Ex 3: Find the product/ expand $(x+2)^{3}$

YOU TRY:

1. Multiply $\left(y^{2}-7 y+5\right)\left(y^{2}-y-3\right)$ using BOTH methods. Write in standard form.
2. A small soup can has a radius of N inches and a height of 5 N inches. A large soup can has 2 inches added to each dimension. Write the volume function $\mathrm{V}(\mathrm{n})$ for the large soup can. [$\mathrm{V}_{\text {cylinder }}=\pi \mathrm{r}^{2} \mathrm{~h}$]
3. Find the product/ expand $(a+2 b)^{3}$

Section 6.3 Dividing Polynomials
Learning Target: We are learning about dividing polynomials.
Success Criteria:
$\bullet \quad$ I can use long division and synthetic division to divide
polynomials.
- I can use synthetic substitution/ remainder theorem to
evaluate the value of a polynomial

Recall Long Division with Numbers:

Polynomial Long Division
Ex1:
A. $\left(x^{2}+5 x-28\right) \div(x-3)$
B. $\left(-y^{2}+2 y^{3}+25\right) \div(y-3)$

Polynomial Synthetic Division

Ex2:
A. $\left(3 x^{2}+9 x-2\right) \div\left(x-\frac{1}{3}\right)$
B. $\left(3 x^{4}-x^{3}+5 x-1\right) \div(x+2)$

Remainder Theorem: If $P(x) \div(x-a)$, then the remainder $r=$ \qquad This means that when " a " is plugged into the polynomial then the resulting $P(a)$ and remainder r are exactly the same! Using synthetic substitution is the fastest way to apply the remainder theorem.

Ex 3:

A. Find $P(x)=3 x^{5}-x^{4}-5 x+10$ for $x=-2$
B. Find $P(x)=6 x^{4}-25 x^{3}-3 x+5$ for $x=-\frac{1}{3}$

Compare to actually plugging the value in for x :

Ex 4: Write an expression that represents the area of the top face of a rectangular prism when the height is $x+2$ and the volume of the prism is $x^{3}-x^{2}-6 x$

YOU TRY:

1. Divide using long division: $\left(3 x^{3}-2 x^{2}+2 x-5\right) \div(x-2)$
2. Divide using synthetic division: $\left(3 x^{2}+10 x+8\right) \div(x+2)$
3. Find $P(x)=3 x^{5}+4 x^{2}+x+6$ for $x=-1$

Section 6.4: Factoring Polynomials

Learning Target: We are learning about factoring polynomials.

Success Criteria:

- I can use the Factor Theorem to determine the factors of a polynomial.
- I can factor the sum and difference of two cubes.

Factor Theorem: For any polynomial $P(x),(x-a)$ is a factor of $P(x)$ if and only if $P(a)=0$
$P(x)=x^{2}-1$

$$
\begin{aligned}
& P(1)= \\
& P(-1)=
\end{aligned}
$$

Therefore, $(x-1)$ and $(x+1)$ are factors

Ex1: Determine if the given binomial is a factor of $P(x)$, if so write answer as a product.
A. $(x+2), P(x)=3 x^{4}+6 x^{3}-5 x-10$
B. $(x+1), P(x)=x^{2}-3 x+1$

FACTORING POLYNOMIALS: some of the same skills used with quadratic factoring will be useful but we need to add new tools to the factoring toolbox!

- Factor by Grouping:
Ex2: A. $x^{3}-x^{2}-25 x+25$
B. $2 x^{3}+x^{2}+8 x+4$
- Sum/ Difference of Cubes (special factoring rules)

Sum of 2 cubes:

Difference of cubes:
Ex3: A. $4 x^{4}+108 x$
B. $125 d^{3}-8$

Ex4: The volume of a plastic storage box is modeled by the equation $V(x)=x^{3}+6 x^{2}+3 x-10$. Find x for which $\mathrm{V}(\mathrm{x})=0$. (use graph to factor x)

YOU TRY

1. Determine if $(x-2)$ is a factor of $P(x)=5 x^{3}+x^{2}-7$, if so write answer as a product.
2. Factor: $8 y^{3}-4 y^{2}-50 y+25$
3. Factor: $128 \mathrm{x}^{4}-54 \mathrm{x}$
**Read p. 432 example problem and solution \#4 for understanding \& attempt to explain to someone else.

YOU TRY answers:

Sec 6.1:

1. A. zero degree
B. $6^{\text {th }}$ degree
2. $\mathrm{A} . \mathrm{LC}=2$, deg $=2$, \# terms $=1$, name $=$ quadratic monomial
B. $L C=-4$, deg $=3$, \# terms $=3$, name = cubic trinomial
3. A. $-5 x^{3}-x^{2}+9 x-2$
B. $7 x^{3}+7 x^{2}+3 x+17$
4. Graph starts down, increases, flattens out then increases again. It crosses the x-axis once so it has one real root.

Sec 6.2:

1. $y^{4}-8 y^{3}+9 y^{2}+16 y-15$
2. $V(N)=\pi\left(5 N^{3}+22 N^{2}+28 N+8\right)$
3. $a^{3}+6 a^{2} b+12 a b^{2}+8 b^{3}$

Sec 6.3:

1. $3 x^{2}+4 x+10+\frac{15}{(x-2)}$
2. $3 x-4$ [using synthetic division and getting a remainder of zero means $(x+2)$ is a factor
3. $P(-1)=6$

Sec 6.4:

1. $R=37$ so $(x-2)$ is NOT a factor
2. $(2 y-1)(2 y-5)(2 y+5)$
3. $2 x(4 x-3)\left(16 x^{2}+12 x+9\right)$
